High Throughput Variable Size Non-square Gabor Engine with Feature Pooling Based on GPU

Ali Emami, A. Bigdeli, A. Postula
{"title":"High Throughput Variable Size Non-square Gabor Engine with Feature Pooling Based on GPU","authors":"Ali Emami, A. Bigdeli, A. Postula","doi":"10.1109/DICTA.2010.73","DOIUrl":null,"url":null,"abstract":"Increasing application of Gabor feature space in various computer vision tasks and its high computational demand, encourages using parallel computing technologies. In this work we have designed a high throughput GPU based Gabor kernel that mimics the function of initial biological visual cortex layers namely ‘Simple’ and ‘Complex’ cells. The kernel is basically a Gabor filter bank with adjustable number of orientations and scales, supporting ‘Non-Square’ and ‘Variable Size’ filter masks on different channels. Consequently our GPU based Gabor kernel tends to be adjustably more accurate, more flexible for different applications, with optimum computational cost at lower resources. The second important task of our high throughput engine is ‘Gabor Feature Pooling’ with Max and Histogram methods, similar to biological visual ‘Complex cells’. This part of our ‘Gabor Engine’ makes it very practical for computer vision applications, since in addition to massive Gabor features, it also provides more abstract spatial invariant orientational information based on image Gabor features. We have optimised the Engine design to take maximum advantage of all GPU parallel resources and maximum bandwidths of all memories.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Increasing application of Gabor feature space in various computer vision tasks and its high computational demand, encourages using parallel computing technologies. In this work we have designed a high throughput GPU based Gabor kernel that mimics the function of initial biological visual cortex layers namely ‘Simple’ and ‘Complex’ cells. The kernel is basically a Gabor filter bank with adjustable number of orientations and scales, supporting ‘Non-Square’ and ‘Variable Size’ filter masks on different channels. Consequently our GPU based Gabor kernel tends to be adjustably more accurate, more flexible for different applications, with optimum computational cost at lower resources. The second important task of our high throughput engine is ‘Gabor Feature Pooling’ with Max and Histogram methods, similar to biological visual ‘Complex cells’. This part of our ‘Gabor Engine’ makes it very practical for computer vision applications, since in addition to massive Gabor features, it also provides more abstract spatial invariant orientational information based on image Gabor features. We have optimised the Engine design to take maximum advantage of all GPU parallel resources and maximum bandwidths of all memories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GPU特征池的高吞吐量变大小非平方Gabor引擎
Gabor特征空间在各种计算机视觉任务中的应用越来越多,其高计算需求鼓励使用并行计算技术。在这项工作中,我们设计了一个基于GPU的高通量Gabor内核,它模仿了初始生物视觉皮层层的功能,即“简单”和“复杂”细胞。内核基本上是一个Gabor滤波器组,具有可调数量的方向和尺度,支持不同通道上的“非正方形”和“可变大小”滤波器蒙版。因此,我们基于GPU的Gabor内核往往更准确,更灵活地适应不同的应用程序,以更低的资源获得最佳的计算成本。我们高通量引擎的第二个重要任务是使用Max和直方图方法的“Gabor特征池”,类似于生物视觉的“复杂细胞”。我们的“Gabor引擎”的这一部分使得它在计算机视觉应用中非常实用,因为除了大量的Gabor特征之外,它还提供了基于图像Gabor特征的更抽象的空间不变方向信息。我们优化了引擎设计,以最大限度地利用所有GPU并行资源和所有内存的最大带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1