Graph Neural Networks for Idling Error Mitigation

Vedika Servanan, S. Saeed
{"title":"Graph Neural Networks for Idling Error Mitigation","authors":"Vedika Servanan, S. Saeed","doi":"10.1145/3508352.3549444","DOIUrl":null,"url":null,"abstract":"Dynamical Decoupling (DD)-based protocols have been shown to reduce the idling errors encountered in quantum circuits. However, the current research in suppressing idling qubit errors suffers from scalability issues due to the large number of tuning quantum circuits that should be executed first to find the locations of the DD sequences in the target quantum circuit, which boost the output state fidelity. This process becomes tedious as the size of the quantum circuit increases. To address this challenge, we propose a Graph Neural Network (GNN) framework, which mitigates idling errors through an efficient insertion of DD sequences into quantum circuits by modeling their impact at different idle qubit windows. Our paper targets maximizing the benefit of DD sequences using a limited number of tuning circuits. We propose to classify the idle qubit windows into critical and non-critical (benign) windows using a data-driven reliability model. Our results obtained from IBM Lagos quantum computer show that our proposed GNN models, which determine the locations of DD sequences in the quantum circuits, significantly improve the output state fidelity by a factor of 1.4x on average and up to 2.6x compared to the adaptive DD approach, which searches for the best locations of DD sequences at run-time.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamical Decoupling (DD)-based protocols have been shown to reduce the idling errors encountered in quantum circuits. However, the current research in suppressing idling qubit errors suffers from scalability issues due to the large number of tuning quantum circuits that should be executed first to find the locations of the DD sequences in the target quantum circuit, which boost the output state fidelity. This process becomes tedious as the size of the quantum circuit increases. To address this challenge, we propose a Graph Neural Network (GNN) framework, which mitigates idling errors through an efficient insertion of DD sequences into quantum circuits by modeling their impact at different idle qubit windows. Our paper targets maximizing the benefit of DD sequences using a limited number of tuning circuits. We propose to classify the idle qubit windows into critical and non-critical (benign) windows using a data-driven reliability model. Our results obtained from IBM Lagos quantum computer show that our proposed GNN models, which determine the locations of DD sequences in the quantum circuits, significantly improve the output state fidelity by a factor of 1.4x on average and up to 2.6x compared to the adaptive DD approach, which searches for the best locations of DD sequences at run-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缓解空转错误的图神经网络
基于动态解耦(DD)的协议已被证明可以减少量子电路中遇到的空转错误。然而,目前抑制空转量子比特错误的研究存在可扩展性问题,因为需要首先执行大量的调谐量子电路来找到DD序列在目标量子电路中的位置,从而提高输出状态的保真度。随着量子电路尺寸的增加,这个过程变得单调乏味。为了解决这一挑战,我们提出了一个图神经网络(GNN)框架,该框架通过模拟DD序列在不同空闲量子位窗口的影响,通过将DD序列有效地插入量子电路来减轻空转错误。我们的论文的目标是使用有限数量的调谐电路最大化DD序列的好处。我们建议使用数据驱动的可靠性模型将空闲量子比特窗口分为关键和非关键(良性)窗口。我们在IBM Lagos量子计算机上获得的结果表明,与自适应DD方法(在运行时搜索DD序列的最佳位置)相比,我们提出的确定DD序列在量子电路中位置的GNN模型显著提高了输出状态保真度,平均提高了1.4倍,最高提高了2.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1