Sea Fog Detection Using U-Net Deep Learning Model Based On Modis Data

Chunyang Zhu, Jianhua Wang, Shanwei Liu, H. Sheng, Yanfang Xiao
{"title":"Sea Fog Detection Using U-Net Deep Learning Model Based On Modis Data","authors":"Chunyang Zhu, Jianhua Wang, Shanwei Liu, H. Sheng, Yanfang Xiao","doi":"10.1109/WHISPERS.2019.8920979","DOIUrl":null,"url":null,"abstract":"Sea fog can have both negative and positive impacts on humans life. At present, remote sensing has become the main means of long-term and large-scale observation of sea fog. With the improvement of spectral resolution and increase of data volume, the traditional threshold method is simple and convenient as the main method of current sea fog detection, but it’s not flexible and accurate enough which causes people need a more automated and intelligent algorithm to achieve efficient sea fog detection. In this article, we use the U-Net deep learning model to construct the sea fog detection model for MODIS multi-spectral images. The main steps include? (1) Data preprocessing, including the PCA method for dimensionality reduction of data; (2) Manual samples extraction with CALIPSO data assist; (3) Construction and training of U-Net sea fog detection model. The experimental results show that the U-Net model can effectively and machine learning method has good potential in sea fog detection.","PeriodicalId":377495,"journal":{"name":"Workshop on Hyperspectral Image and Signal Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Hyperspectral Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2019.8920979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sea fog can have both negative and positive impacts on humans life. At present, remote sensing has become the main means of long-term and large-scale observation of sea fog. With the improvement of spectral resolution and increase of data volume, the traditional threshold method is simple and convenient as the main method of current sea fog detection, but it’s not flexible and accurate enough which causes people need a more automated and intelligent algorithm to achieve efficient sea fog detection. In this article, we use the U-Net deep learning model to construct the sea fog detection model for MODIS multi-spectral images. The main steps include? (1) Data preprocessing, including the PCA method for dimensionality reduction of data; (2) Manual samples extraction with CALIPSO data assist; (3) Construction and training of U-Net sea fog detection model. The experimental results show that the U-Net model can effectively and machine learning method has good potential in sea fog detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Modis数据的U-Net深度学习模型海雾检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban vegetation mapping by airborne hyperspetral imagery; feasibility and limitations Person re-identification with hyperspectral multi-camera systems #x2014; A pilot study The study of correlation analysis between the saline soil hyperspectral reflectance and the surface soil conductivity at the Weigan-Kuqa rivers delta oasis Selection of different Extraterrestrial Solar Spectral Irradiance datasets and its effects on Mean Solar Exoatmospheric Irradiance The theory and application of the spectralogy of soil Remote Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1