Axial Flux Wire Measurements at the McMaster Nuclear Reactor

E. MacConnachie, D. Novog, S. Day
{"title":"Axial Flux Wire Measurements at the McMaster Nuclear Reactor","authors":"E. MacConnachie, D. Novog, S. Day","doi":"10.1115/ICONE26-82412","DOIUrl":null,"url":null,"abstract":"In a 2008 report on safety analysis for research reactors, the International Atomic Energy Agency (IAEA) identified experimentation as the preferred method of code validation [1]. However, many experiments currently used for code validation are performed under conditions that are not representative of real nuclear systems. Furthermore, the predominant uncertainties reported for reactor systems parameters are typically those associated with evaluated nuclear data libraries however, the significance of spatial uncertainties remains generally unknown. The magnitude of local flux measurement experimental uncertainties have not be investigated at length in the McMaster Nuclear Reactor (MNR). Such results can be used for validation of MNR models with both Monte Carlo N Particle (MCNP) and Serpent code packages. Flux wire measurements have previously been conducted at the center of an irradiation site (via the technique of neutron activation analysis), where a locally uniform flux distribution has been assumed. Early stage results show good agreement with three-dimensional neutron diffusion theory and demonstrate the viability of such measurements for continued analysis. However, the magnitude of the effects of Xenon buildup, control rod positions, and spatial sample positioning on the data remain unknown, and so a series of experiments is ongoing to address these areas of experimental variability. Full length flux wire irradiations at several high-power levels (500 kW, 800 kW, and 1 MW) are being conducted to quantify these effects. At each operating power level, several NiCr wires are irradiated, and the decay of 51Cr examined to determine the total neutron flux in the irradiation site. The use of multiple wires per irradiation provides insight into the spatial gradient of the neutron flux across one reactor site (approximately 8 × 8 cm).","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-82412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a 2008 report on safety analysis for research reactors, the International Atomic Energy Agency (IAEA) identified experimentation as the preferred method of code validation [1]. However, many experiments currently used for code validation are performed under conditions that are not representative of real nuclear systems. Furthermore, the predominant uncertainties reported for reactor systems parameters are typically those associated with evaluated nuclear data libraries however, the significance of spatial uncertainties remains generally unknown. The magnitude of local flux measurement experimental uncertainties have not be investigated at length in the McMaster Nuclear Reactor (MNR). Such results can be used for validation of MNR models with both Monte Carlo N Particle (MCNP) and Serpent code packages. Flux wire measurements have previously been conducted at the center of an irradiation site (via the technique of neutron activation analysis), where a locally uniform flux distribution has been assumed. Early stage results show good agreement with three-dimensional neutron diffusion theory and demonstrate the viability of such measurements for continued analysis. However, the magnitude of the effects of Xenon buildup, control rod positions, and spatial sample positioning on the data remain unknown, and so a series of experiments is ongoing to address these areas of experimental variability. Full length flux wire irradiations at several high-power levels (500 kW, 800 kW, and 1 MW) are being conducted to quantify these effects. At each operating power level, several NiCr wires are irradiated, and the decay of 51Cr examined to determine the total neutron flux in the irradiation site. The use of multiple wires per irradiation provides insight into the spatial gradient of the neutron flux across one reactor site (approximately 8 × 8 cm).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
麦克马斯特核反应堆轴向通量线测量
在2008年的一份研究堆安全分析报告中,国际原子能机构(IAEA)将实验确定为代码验证的首选方法[1]。然而,目前用于代码验证的许多实验是在不代表真实核系统的条件下进行的。此外,报告的反应堆系统参数的主要不确定性通常是与评估的核数据库相关的不确定性,然而,空间不确定性的重要性通常仍然未知。麦克马斯特核反应堆(MNR)局部通量测量实验不确定度的大小尚未进行详细研究。这样的结果可以用于蒙特卡罗N粒子(MCNP)和Serpent代码包的MNR模型验证。通量线测量以前是在辐照地点的中心进行的(通过中子活化分析技术),在那里假定局部通量分布均匀。早期的结果与三维中子扩散理论很好地吻合,并证明了这种测量对继续分析的可行性。然而,氙气积聚、控制棒位置和空间样品定位对数据的影响程度仍然未知,因此一系列的实验正在进行中,以解决这些实验变化的领域。正在进行若干高功率水平(500千瓦、800千瓦和1兆瓦)的全长通量线照射,以量化这些影响。在每个工作功率水平下辐照几根NiCr导线,并检测51Cr的衰变以确定辐照部位的总中子通量。每次辐照使用多根导线,可以深入了解中子通量在一个反应堆场地的空间梯度(大约8 × 8厘米)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer and Fluid Flow Characteristics of One Side Heated Vertical Rectangular Channel Applied As Vessel Cooling System of VHTR Hydraulic Characteristics Research on SG Under Tube Plugging Operations Using FLUENT Study on Flow Structure in a Supersonic Steam Injector Electrochemical Measurement of Radio-Activated Metal Under High Temperature Condition Simulation Research on Thermal-Hydraulic Performance of a Natural Circulation Integrated Pressurized Water Reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1