Copula Guided Neural Topic Modelling for Short Texts

Lihui Lin, Hongyu Jiang, Yanghui Rao
{"title":"Copula Guided Neural Topic Modelling for Short Texts","authors":"Lihui Lin, Hongyu Jiang, Yanghui Rao","doi":"10.1145/3397271.3401245","DOIUrl":null,"url":null,"abstract":"Extracting the topical information from documents is important for public opinion analysis, text classification, and information retrieval tasks. Compared with identifying a wide variety of topics from long documents, it is challenging to generate a concentrated topic distribution for each short message. Although this problem can be tackled by adjusting the hyper-parameters in traditional topic models such as Latent Dirichlet Allocation, it remains an open problem in neural topic modelling. In this paper, we focus on adapting the popular Auto-Encoding Variational Bayes based neural topic models to short texts, by exploring the Archimedean copulas to guide the estimated topic distributions derived from linear projected samples of re-parameterized posterior distributions. Experimental results show the superiority of our method when compared with existing neural topic models in terms of perplexity, topic coherence, and classification accuracy.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Extracting the topical information from documents is important for public opinion analysis, text classification, and information retrieval tasks. Compared with identifying a wide variety of topics from long documents, it is challenging to generate a concentrated topic distribution for each short message. Although this problem can be tackled by adjusting the hyper-parameters in traditional topic models such as Latent Dirichlet Allocation, it remains an open problem in neural topic modelling. In this paper, we focus on adapting the popular Auto-Encoding Variational Bayes based neural topic models to short texts, by exploring the Archimedean copulas to guide the estimated topic distributions derived from linear projected samples of re-parameterized posterior distributions. Experimental results show the superiority of our method when compared with existing neural topic models in terms of perplexity, topic coherence, and classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Copula的短文本神经主题建模
从文档中提取主题信息对于舆情分析、文本分类和信息检索任务具有重要意义。与从长文档中识别各种主题相比,为每条短消息生成集中的主题分布具有挑战性。虽然可以通过调整潜狄利克雷分配等传统主题模型的超参数来解决这一问题,但它仍然是神经主题建模中的一个开放性问题。在本文中,我们将流行的基于自编码变分贝叶斯的神经主题模型应用于短文本,通过探索阿基米德copulas来指导由重新参数化后验分布的线性投影样本导出的估计主题分布。实验结果表明,与现有神经主题模型相比,该方法在困惑度、主题一致性和分类精度方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1