Renato Baptista, Girum G. Demisse, Djamila Aouada, B. Ottersten
{"title":"Deformation-Based Abnormal Motion Detection using 3D Skeletons","authors":"Renato Baptista, Girum G. Demisse, Djamila Aouada, B. Ottersten","doi":"10.1109/IPTA.2018.8608143","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system for abnormal motion detection using 3D skeleton information, where the abnormal motion is not known a priori. To that end, we present a curve-based representation of a sequence, based on few joints of a 3D skeleton, and a deformation-based distance function. We further introduce a time-variation model that is specifically designed for assessing the quality of a motion; we refer to a distance function that is based on such a model as motion quality distance. The overall advantages of the proposed approach are 1) lower dimensional yet representative sequence representation and 2) a distance function that emphasizes time variation, the motion quality distance, which is a particularly important property for quality assessment. We validate our approach using a publicly available dataset, SPHERE-StairCase2014 dataset. Qualitative and quantitative results show promising performance.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, we propose a system for abnormal motion detection using 3D skeleton information, where the abnormal motion is not known a priori. To that end, we present a curve-based representation of a sequence, based on few joints of a 3D skeleton, and a deformation-based distance function. We further introduce a time-variation model that is specifically designed for assessing the quality of a motion; we refer to a distance function that is based on such a model as motion quality distance. The overall advantages of the proposed approach are 1) lower dimensional yet representative sequence representation and 2) a distance function that emphasizes time variation, the motion quality distance, which is a particularly important property for quality assessment. We validate our approach using a publicly available dataset, SPHERE-StairCase2014 dataset. Qualitative and quantitative results show promising performance.