Behavior analysis of malware using machine learning

Arshi Dhammi, M. Singh
{"title":"Behavior analysis of malware using machine learning","authors":"Arshi Dhammi, M. Singh","doi":"10.1109/IC3.2015.7346730","DOIUrl":null,"url":null,"abstract":"In today's scenario, cyber security is one of the major concerns in network security and malware pose a serious threat to cyber security. The foremost step to guard the cyber system is to have an in-depth knowledge of the existing malware, various types of malware, methods of detecting and bypassing the adverse effects of malware. In this work, machine learning approach to the fore-going static and dynamic analysis techniques is investigated and reported to discuss the most recent trends in cyber security. The study captures a wide variety of samples from various online sources. The peculiar details about the malware such as file details, signatures, and hosts involved, affected files, registry keys, mutexes, section details, imports, strings and results from different antivirus have been deeply analyzed to conclude origin and functionality of malware. This approach contributes to vital cyber situation awareness by combining different malware discovery techniques, for example, static examination, to alter the session of malware triage for cyber defense and decreases the count of false alarms. Current trends in warfare have been determined.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In today's scenario, cyber security is one of the major concerns in network security and malware pose a serious threat to cyber security. The foremost step to guard the cyber system is to have an in-depth knowledge of the existing malware, various types of malware, methods of detecting and bypassing the adverse effects of malware. In this work, machine learning approach to the fore-going static and dynamic analysis techniques is investigated and reported to discuss the most recent trends in cyber security. The study captures a wide variety of samples from various online sources. The peculiar details about the malware such as file details, signatures, and hosts involved, affected files, registry keys, mutexes, section details, imports, strings and results from different antivirus have been deeply analyzed to conclude origin and functionality of malware. This approach contributes to vital cyber situation awareness by combining different malware discovery techniques, for example, static examination, to alter the session of malware triage for cyber defense and decreases the count of false alarms. Current trends in warfare have been determined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的恶意软件行为分析
在当今的情况下,网络安全是网络安全的主要问题之一,恶意软件对网络安全构成严重威胁。保护网络系统的首要步骤是深入了解现有的恶意软件,各种类型的恶意软件,检测和绕过恶意软件的不利影响的方法。在这项工作中,研究并报告了机器学习方法对上述静态和动态分析技术的影响,以讨论网络安全的最新趋势。这项研究从各种在线资源中获取了各种各样的样本。深入分析了不同杀毒软件的文件详细信息、签名、涉及的主机、受影响的文件、注册表项、互斥锁、区段详细信息、导入、字符串和结果等恶意软件的特殊细节,得出了恶意软件的来源和功能。这种方法通过结合不同的恶意软件发现技术(例如,静态检查)来改变恶意软件分类的会话以进行网络防御,并减少假警报的数量,从而有助于重要的网络态势感知。目前的战争趋势已经确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing security technique on generic database Pruned feature space for metamorphic malware detection using Markov Blanket Mitigation of desynchronization attack during inter-eNodeB handover key management in LTE Task behaviour inputs to a heterogeneous multiprocessor scheduler Hand written digit recognition system for South Indian languages using artificial neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1