Static and Verifiable Memory Partitioning for Safety-Critical Systems

Jean Guyomarc'h, Jean-Baptiste Hervé
{"title":"Static and Verifiable Memory Partitioning for Safety-Critical Systems","authors":"Jean Guyomarc'h, Jean-Baptiste Hervé","doi":"10.1109/ISSREW51248.2020.00041","DOIUrl":null,"url":null,"abstract":"Multitasking enables multiple tasks to be executed on the same hardware, and spatial partitioning aims at enforcing a strong isolation between them: tasks must not access memory regions for which they were not granted permission. This behavior is enforced at run-time by memory protection schemes enabled by dedicated hardware components. Today, memory protection is widely implemented on a great diversity of systems, mostly with dynamic requirements (e.g. variable number of tasks). Safety-critical systems must comply with high level of certification to ensure minimal probability of failure and are subject to stringent requirements on the embedded executable, which makes memory protection mandatory, but requires important certification efforts. This paper presents a method for the generation of static and verifiable memory partitioning schemes towards safety-critical systems, aiming at reducing certification costs without compromising safety properties.","PeriodicalId":202247,"journal":{"name":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW51248.2020.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multitasking enables multiple tasks to be executed on the same hardware, and spatial partitioning aims at enforcing a strong isolation between them: tasks must not access memory regions for which they were not granted permission. This behavior is enforced at run-time by memory protection schemes enabled by dedicated hardware components. Today, memory protection is widely implemented on a great diversity of systems, mostly with dynamic requirements (e.g. variable number of tasks). Safety-critical systems must comply with high level of certification to ensure minimal probability of failure and are subject to stringent requirements on the embedded executable, which makes memory protection mandatory, but requires important certification efforts. This paper presents a method for the generation of static and verifiable memory partitioning schemes towards safety-critical systems, aiming at reducing certification costs without compromising safety properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全关键系统的静态和可验证内存分区
多任务允许在相同的硬件上执行多个任务,而空间分区旨在强制它们之间的强隔离:任务不能访问它们未被授予权限的内存区域。此行为在运行时由专用硬件组件启用的内存保护方案强制执行。今天,内存保护在各种各样的系统上得到了广泛的实现,这些系统大多具有动态需求(例如,可变数量的任务)。安全关键型系统必须遵守高级别认证,以确保故障的可能性最小化,并遵守嵌入式可执行文件的严格要求,这使得内存保护成为强制性的,但需要重要的认证工作。本文提出了一种针对安全关键系统生成静态和可验证内存分区方案的方法,旨在降低认证成本而不损害安全特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BP-IDS: Using business process specification to leverage intrusion detection in critical infrastructures Techniques and Tools for Advanced Software Vulnerability Detection Challenges Faced with Application Performance Monitoring (APM) when Migrating to the Cloud AHPCap: A Framework for Automated Hardware Profiling and Capture of Mobile Application States Unit Lemmas for Detecting Requirement and Specification Flaws
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1