Linkage of Spatio-Temporal Data and Trajectories

Dimitrios Karapiperis, A. Gkoulalas-Divanis, Vassilios S. Verykios
{"title":"Linkage of Spatio-Temporal Data and Trajectories","authors":"Dimitrios Karapiperis, A. Gkoulalas-Divanis, Vassilios S. Verykios","doi":"10.1109/ISC246665.2019.9071724","DOIUrl":null,"url":null,"abstract":"The abundance of datasets containing spatio-temporal information calls for novel record linkage methods that can effectively operate on such data to discover records that refer to the same real-world entity. In this paper, we propose the first approach for spatio-temporal record linkage that leverages the power of LSH to provide accuracy guarantees. Through experimental evaluation, we show that our approach outperforms the state-of-the-art method and can scale well to large datasets.","PeriodicalId":306836,"journal":{"name":"2019 IEEE International Smart Cities Conference (ISC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC246665.2019.9071724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The abundance of datasets containing spatio-temporal information calls for novel record linkage methods that can effectively operate on such data to discover records that refer to the same real-world entity. In this paper, we propose the first approach for spatio-temporal record linkage that leverages the power of LSH to provide accuracy guarantees. Through experimental evaluation, we show that our approach outperforms the state-of-the-art method and can scale well to large datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空数据与轨迹的联动
大量包含时空信息的数据集需要新的记录链接方法,这些方法可以有效地对这些数据进行操作,以发现引用相同现实世界实体的记录。在本文中,我们提出了第一种利用LSH提供准确性保证的时空记录链接方法。通过实验评估,我们表明我们的方法优于最先进的方法,并且可以很好地扩展到大型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Mobility for Seniors through the Urban Connector A Web-based Navigation System for a Smart Campus with Air Quality Monitoring Intelligent Power Control and User Comfort Management in Buildings Using Bacterial Foraging Algorithm Analysis on Regularity of Speech Energy based on Optimal Thresholding for Tamil Stuttering Dataset A Cloud Platform for Smart Government Services, using SDN networks: the case of study at Jalisco State in Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1