Detection of Anomalies in Power Profiles using Data Analytics

G. Stamatescu, Radu Plamanescu, I. Ciornei, M. Albu
{"title":"Detection of Anomalies in Power Profiles using Data Analytics","authors":"G. Stamatescu, Radu Plamanescu, I. Ciornei, M. Albu","doi":"10.1109/AMPS55790.2022.9978833","DOIUrl":null,"url":null,"abstract":"Deployment of high reporting rate smart metering infrastructure together with a multitude of sensors for automation and control are an increasing trend among energy communities and prosumers. These systems provide useful information for data-driven prediction and classification models for micro-loads and local power generation. Matrix Profile is a promising general purpose data mining technique for time series data, such as electrical measurements from advanced smart meters. In this work, we first describe the measurement context that provides rich data availability for current advanced energy analytics applications. We target power profiles for both generation and load to highlight salient and complementary characteristics thereof, which can be leveraged in applications involving data-driven analytics for enhancing observability in distribution grids. A sensitivity analysis investigating the chosen method under various input noise assumptions is presented using Monte Carlo simulation. The comparative results indicate the relative robustness of the Matrix Profile approach for anomaly detection tasks in energy measurements traces.","PeriodicalId":253296,"journal":{"name":"2022 IEEE 12th International Workshop on Applied Measurements for Power Systems (AMPS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th International Workshop on Applied Measurements for Power Systems (AMPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMPS55790.2022.9978833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deployment of high reporting rate smart metering infrastructure together with a multitude of sensors for automation and control are an increasing trend among energy communities and prosumers. These systems provide useful information for data-driven prediction and classification models for micro-loads and local power generation. Matrix Profile is a promising general purpose data mining technique for time series data, such as electrical measurements from advanced smart meters. In this work, we first describe the measurement context that provides rich data availability for current advanced energy analytics applications. We target power profiles for both generation and load to highlight salient and complementary characteristics thereof, which can be leveraged in applications involving data-driven analytics for enhancing observability in distribution grids. A sensitivity analysis investigating the chosen method under various input noise assumptions is presented using Monte Carlo simulation. The comparative results indicate the relative robustness of the Matrix Profile approach for anomaly detection tasks in energy measurements traces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用数据分析检测电源配置文件中的异常
部署高报告率的智能计量基础设施以及大量用于自动化和控制的传感器是能源社区和产消者日益增长的趋势。这些系统为微负荷和局部发电的数据驱动预测和分类模型提供了有用的信息。矩阵剖面是一种很有前途的通用数据挖掘技术,用于时间序列数据,如高级智能电表的电测量。在这项工作中,我们首先描述了为当前先进的能源分析应用提供丰富数据可用性的测量上下文。我们的目标是发电和负荷的功率曲线,以突出其突出和互补的特征,这可以在涉及数据驱动分析的应用中加以利用,以增强配电网的可观察性。采用蒙特卡罗模拟方法对所选方法在不同输入噪声条件下的灵敏度进行了分析。对比结果表明,矩阵剖面方法在能量测量轨迹异常检测任务中具有相对的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time domain symmetry parameters analysis for series arc fault detection A Bi-objective Optimal PMU Placement Strategy Reconciling Costs and State Estimation Uncertainty Latency Characterization of a Wide Area Monitoring Protection and Control Application in the Italian Transmission System Welcome Message from the Chairmen Evaluation of composite voltage test parameters in the case of the combination power frequency and switching impulse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1