Improved Few-Shot Learning for Images Classification

Jialin Yu, Jun Liang, Haoyang Mei, Jingwen Fan, Songsen Yu
{"title":"Improved Few-Shot Learning for Images Classification","authors":"Jialin Yu, Jun Liang, Haoyang Mei, Jingwen Fan, Songsen Yu","doi":"10.1109/ISPDS56360.2022.9874232","DOIUrl":null,"url":null,"abstract":"Few-shot learning is an approach that classify unseen classes with limited labeled samples. We propose improved networks of Relation Network to classify images with small samples. The improved networks is ECA Relation Network (ECA-RNET). The accuracy of ECA-RNET is 52.24% and 67.85% on 5-way 1-shot and 5-way 5-shot of mini-ImageNet dataset, respectively.","PeriodicalId":280244,"journal":{"name":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDS56360.2022.9874232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot learning is an approach that classify unseen classes with limited labeled samples. We propose improved networks of Relation Network to classify images with small samples. The improved networks is ECA Relation Network (ECA-RNET). The accuracy of ECA-RNET is 52.24% and 67.85% on 5-way 1-shot and 5-way 5-shot of mini-ImageNet dataset, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的基于Few-Shot学习的图像分类
少射学习是一种用有限的标记样本对看不见的类进行分类的方法。我们提出了改进的关系网络网络对小样本图像进行分类。改进后的网络是ECA关系网络(ECA- rnet)。在mini-ImageNet数据集的5-way 1-shot和5-way 5-shot上,ECA-RNET的准确率分别为52.24%和67.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Intelligent Quality Inspection of Customer Service Under the “One Network” Operation Mode of Toll Roads Application of AE keying technology in film and television post-production Study on Artifact Classification Identification Based on Deep Learning Design of Real-time Target Detection System in CCD Vertical Target Coordinate Measurement An evaluation method of municipal pipeline cleaning effect based on image processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1