Classification of Cold and Non-Cold Speech Using Vowel-Like Region Segments

Pankaj Warule, S. Mishra, S. Deb
{"title":"Classification of Cold and Non-Cold Speech Using Vowel-Like Region Segments","authors":"Pankaj Warule, S. Mishra, S. Deb","doi":"10.1109/SPCOM55316.2022.9840775","DOIUrl":null,"url":null,"abstract":"This work uses vowel-like region segments of speech to classify cold and non-cold speech signals. As various articulators are affected by the common cold, speech produced during the common cold gets affected. These changes in a speech during common cold can be used to classify cold and non-cold speech. Vowel-like region (VLR) in speech includes vowels, semi-vowels, and diphthongs phonemes. Vowel-like regions are the dominant part of the speech signal. Hence, we have considered only vowel-like regions for cold and non-cold speech classification. The VLRs are identified by locating the VLR onset point (VLROP) and end point (VLREP). The Hilbert envelope and zero frequency filtering methods are used for detection of VLROPs and VLREPs. Mel frequency cepstral coefficients (MFCCs) feature are extracted from VLRs, and the performance of these features are evaluated using a deep neural network. Features extracted from VLRs give comparable results to features extracted from complete active speech (CAS) signal. Compared to the CAS technique, the number of frames that needs to be processed utilizing VLRs is significantly less.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"159 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This work uses vowel-like region segments of speech to classify cold and non-cold speech signals. As various articulators are affected by the common cold, speech produced during the common cold gets affected. These changes in a speech during common cold can be used to classify cold and non-cold speech. Vowel-like region (VLR) in speech includes vowels, semi-vowels, and diphthongs phonemes. Vowel-like regions are the dominant part of the speech signal. Hence, we have considered only vowel-like regions for cold and non-cold speech classification. The VLRs are identified by locating the VLR onset point (VLROP) and end point (VLREP). The Hilbert envelope and zero frequency filtering methods are used for detection of VLROPs and VLREPs. Mel frequency cepstral coefficients (MFCCs) feature are extracted from VLRs, and the performance of these features are evaluated using a deep neural network. Features extracted from VLRs give comparable results to features extracted from complete active speech (CAS) signal. Compared to the CAS technique, the number of frames that needs to be processed utilizing VLRs is significantly less.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于类元音区域分段的冷语和非冷语分类
这项工作使用类似元音的语音区域片段对冷和非冷语音信号进行分类。由于各种发音器官受到普通感冒的影响,在普通感冒期间产生的语言也会受到影响。普通感冒期间言语的这些变化可以用来区分冷言语和非冷言语。语音中的类元音区域包括元音、半元音和双元音音素。类元音区域是语音信号的主要部分。因此,我们只考虑了类似元音的区域来进行冷语音和非冷语音分类。通过定位VLR起始点(VLROP)和结束点(VLREP)来识别VLR。采用希尔伯特包络和零频率滤波方法检测VLROPs和VLREPs。从VLRs中提取了Mel频率倒谱系数(MFCCs)特征,并利用深度神经网络对这些特征的性能进行了评价。从VLRs中提取的特征与从完整主动语音(CAS)信号中提取的特征具有可比性。与CAS技术相比,需要利用VLRs处理的帧数明显减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
C-Band Iris Coupled Cavity Bandpass Filter A Wideband Bandpass Filter using U-shaped slots on SIW with two Notches at 8 GHz and 10 GHz Semi-Blind Technique for Frequency Selective Channel Estimation in Millimeter-Wave MIMO Coded FBMC System Binary Intelligent Reflecting Surfaces Assisted OFDM Systems Improving the Performance of Zero-Resource Children’s ASR System through Formant and Duration Modification based Data Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1