West Nile Virus Prediction Based on Data Mining

Wei Meng
{"title":"West Nile Virus Prediction Based on Data Mining","authors":"Wei Meng","doi":"10.1142/s0219265921500250","DOIUrl":null,"url":null,"abstract":"This paper performed some exploratory data visualization on this data set. The nature and representation of input data was found out and the preliminary feature selection was conducted in this step. And this paper performed data preprocessing and feature engineering on this data set, which had critical importance of the accuracy of prediction results. The paper built multiple regression models on the missing values prediction in the testing set. The paper implemented various data mining algorithms to build predictive models, including Gaussian Naive Bayes classifier, K-Nearest Neighbors (K-NN) algorithm, Multi-layer Perceptron (MLP), Logistic regression, random forest and XGBoost. After the experiments, XGBoost classifier could give the best result among all the models.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921500250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper performed some exploratory data visualization on this data set. The nature and representation of input data was found out and the preliminary feature selection was conducted in this step. And this paper performed data preprocessing and feature engineering on this data set, which had critical importance of the accuracy of prediction results. The paper built multiple regression models on the missing values prediction in the testing set. The paper implemented various data mining algorithms to build predictive models, including Gaussian Naive Bayes classifier, K-Nearest Neighbors (K-NN) algorithm, Multi-layer Perceptron (MLP), Logistic regression, random forest and XGBoost. After the experiments, XGBoost classifier could give the best result among all the models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘的西尼罗河病毒预测
本文对该数据集进行了探索性的数据可视化。找出输入数据的性质和表示,并进行初步的特征选择。本文对该数据集进行了数据预处理和特征工程,这对预测结果的准确性至关重要。本文对测试集的缺失值预测建立了多元回归模型。本文实现了多种数据挖掘算法来构建预测模型,包括高斯朴素贝叶斯分类器、k -近邻(K-NN)算法、多层感知器(MLP)、逻辑回归、随机森林和XGBoost。经过实验,XGBoost分类器的分类效果是所有模型中最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient and Multi-Tier Node Deployment Strategy Using Variable Tangent Search in an IOT-Fog Environment An Enhanced Probabilistic-Shaped SCMA NOMA for Wireless Networks Energy-Efficient Data Aggregation and Cluster-Based Routing in Wireless Sensor Networks Using Tasmanian Fully Recurrent Deep Learning Network with Pelican Variable Marine Predators Algorithm A Note on Connectivity of Regular Graphs Hyper Star Fault Tolerance of Hierarchical Star Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1