A Study on Medicinal Plant Leaf Recognition Using Artificial Intelligence

Vina Ayumi, Ermatita Ermatita, Abdiansah Abdiansah, Handrie Noprisson, Mariana Purba, Marissa Utami
{"title":"A Study on Medicinal Plant Leaf Recognition Using Artificial Intelligence","authors":"Vina Ayumi, Ermatita Ermatita, Abdiansah Abdiansah, Handrie Noprisson, Mariana Purba, Marissa Utami","doi":"10.1109/ICIMCIS53775.2021.9699363","DOIUrl":null,"url":null,"abstract":"Medicinal plant recognition manually takes a lot of time and money. Moreover, to reduce these resources, some researchers propose to implement artificial intelligence technology. This paper aims are to conduct a systematic literature review of medicinal plant leaf recognition published in the last two years (2019–2020) from IEEE, Springer and Science Direct. We obtained 15 studies in the field of medicinal plant leaf recognition using artificial intelligence. The dataset used for medicinal plant leaf recognition is mostly used private dataset, however, there are public dataset named Leaf, Flavia, Swedish dataset. We also found robust method that can be used for medicinal plant leaf recognition is Multichannel Modified Local Gradient Pattern (MCMLGP) and Gray Level Co-Occurrence Matrix (GLCM) as feature extraction; and Convolutional Neural Network (CNN), Multi-Layer Perceptron trained with Backpropagation algorithm (MLP-BP), Support Vector Machine (SVM), and Transfer Learning (VGG19) as classifier.","PeriodicalId":250460,"journal":{"name":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMCIS53775.2021.9699363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Medicinal plant recognition manually takes a lot of time and money. Moreover, to reduce these resources, some researchers propose to implement artificial intelligence technology. This paper aims are to conduct a systematic literature review of medicinal plant leaf recognition published in the last two years (2019–2020) from IEEE, Springer and Science Direct. We obtained 15 studies in the field of medicinal plant leaf recognition using artificial intelligence. The dataset used for medicinal plant leaf recognition is mostly used private dataset, however, there are public dataset named Leaf, Flavia, Swedish dataset. We also found robust method that can be used for medicinal plant leaf recognition is Multichannel Modified Local Gradient Pattern (MCMLGP) and Gray Level Co-Occurrence Matrix (GLCM) as feature extraction; and Convolutional Neural Network (CNN), Multi-Layer Perceptron trained with Backpropagation algorithm (MLP-BP), Support Vector Machine (SVM), and Transfer Learning (VGG19) as classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的药用植物叶片识别研究
人工识别药用植物需要花费大量的时间和金钱。此外,为了减少这些资源,一些研究人员提出实施人工智能技术。本文旨在对近两年(2019-2020)IEEE、施普林格和Science Direct发表的药用植物叶片识别的文献进行系统综述。我们在药用植物叶片识别领域获得了15项人工智能研究。药用植物叶片识别使用的数据集多为私有数据集,但也有公共数据集leaf、Flavia、瑞典数据集。我们还发现了多通道修正局部梯度模式(MCMLGP)和灰度共生矩阵(GLCM)作为特征提取的鲁棒方法,可以用于药用植物叶片识别;和卷积神经网络(CNN),多层感知器训练与反向传播算法(MLP-BP),支持向量机(SVM)和迁移学习(VGG19)作为分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Word Expansion using Synonyms in Indonesian Short Essay Auto Scoring Sentiment Analysis of COVID-19 Vaccines from Indonesian Tweets and News Headlines using Various Machine Learning Techniques One Data ASN Framework (ODAF) for Indonesian State Civil Apparatus Sentiment Analysis of Big Cities on The Island of Java in Indonesia from Twitter Data as A Recommender System Effect Of The Learning Rate, Hidden Layer, And Epoch In Lung Cancer Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1