Optimal rate allocation for the vector Gaussian CEO problem

Jinjun Xiao, Z. Luo
{"title":"Optimal rate allocation for the vector Gaussian CEO problem","authors":"Jinjun Xiao, Z. Luo","doi":"10.1109/CAMAP.2005.1574182","DOIUrl":null,"url":null,"abstract":"Consider the problem of estimating a vector source with a bandwidth constrained sensor network in which sensors make distributed observations on the source and collaborate with a fusion center (FC) to generate a final estimate. Due to power and bandwidth limitations, each sensor must compress its data and transmit to the FC only the minimum amount of information necessary to ensure the final estimate meets a given distortion bound. The optimal power allocation for the class of linear decentralized analog compression schemes was considered in Z-Q Luo et al. (2005) and proved to be NP-hard in general. In this paper, we consider the optimal rate allocation problem in the so called Berger-Tung achievable rate distortion region. In contrast to the power allocation for the linear analog compression schemes, we show that the optimal rate allocation can be formulated as a convex optimization problem which can be efficiently solved by interior point methods. Our convex reformulation technique is also applicable to the vector Gaussian multiterminal source coding problem.","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Consider the problem of estimating a vector source with a bandwidth constrained sensor network in which sensors make distributed observations on the source and collaborate with a fusion center (FC) to generate a final estimate. Due to power and bandwidth limitations, each sensor must compress its data and transmit to the FC only the minimum amount of information necessary to ensure the final estimate meets a given distortion bound. The optimal power allocation for the class of linear decentralized analog compression schemes was considered in Z-Q Luo et al. (2005) and proved to be NP-hard in general. In this paper, we consider the optimal rate allocation problem in the so called Berger-Tung achievable rate distortion region. In contrast to the power allocation for the linear analog compression schemes, we show that the optimal rate allocation can be formulated as a convex optimization problem which can be efficiently solved by interior point methods. Our convex reformulation technique is also applicable to the vector Gaussian multiterminal source coding problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矢量高斯CEO问题的最优速率分配
考虑使用带宽受限的传感器网络估计矢量源的问题,其中传感器对源进行分布式观测并与融合中心(FC)协作以生成最终估计。由于功率和带宽的限制,每个传感器必须压缩其数据并仅向FC传输所需的最少信息,以确保最终估计满足给定的失真范围。Z-Q Luo等人(2005)考虑了线性分散模拟压缩方案的最优功率分配,并证明了一般情况下的NP-hard。在本文中,我们考虑了所谓的Berger-Tung可达率失真区域中的最优率分配问题。与线性模拟压缩方案的功率分配相比,我们证明了最优速率分配可以表述为一个凸优化问题,该问题可以用内点法有效地解决。我们的凸重构技术同样适用于向量高斯多端源编码问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft decode and forward improves cooperative communications Blind identification of under-determined mixtures based on the characteristic function: influence of the knowledge of source PDF's Recognition of the predetermined random signals involving the unknown signals Combined direction finders of point noise radiation sources in AA based on adaptive lattice filters Neural network computational technique for high-resolution remote sensing image reconstruction with system fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1