Lyra: Fast and Scalable Resilience to Reordering Attacks in Blockchains

Pouriya Zarbafian, V. Gramoli
{"title":"Lyra: Fast and Scalable Resilience to Reordering Attacks in Blockchains","authors":"Pouriya Zarbafian, V. Gramoli","doi":"10.1109/IPDPS54959.2023.00097","DOIUrl":null,"url":null,"abstract":"Reordering blockchain transactions to manipulate markets profited hackers by hundreds of millions of dollars. Because they rely on State Machine Replication (SMR), blockchains order transactions without preventing hackers from influencing the chosen order. Some order-fair consensus protocols, like Pompē [33], order transactions before agreeing on this order. They are insufficient because a hacker can leverage the lack of triangle inequality among network latencies to observe pending transactions before issuing their own. Other DAG-based protocols, like Fino [24], use commit-reveal to obfuscate transactions, but cannot prevent reordering by a Byzantine leader.In this paper, we present Lyra, a protocol that solves this problem. The key idea is the combination of a commit-reveal protocol to obfuscate transaction payloads, and a leaderless ordered consensus protocol that predicts the order of transactions. Lyra has optimal good-case latency, prevents reordering attacks, and is scalable. Finally, it outperforms the latency of Pompē by up to 2 times and its throughput by up to 7 times on a 100-node network over 3 continents.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reordering blockchain transactions to manipulate markets profited hackers by hundreds of millions of dollars. Because they rely on State Machine Replication (SMR), blockchains order transactions without preventing hackers from influencing the chosen order. Some order-fair consensus protocols, like Pompē [33], order transactions before agreeing on this order. They are insufficient because a hacker can leverage the lack of triangle inequality among network latencies to observe pending transactions before issuing their own. Other DAG-based protocols, like Fino [24], use commit-reveal to obfuscate transactions, but cannot prevent reordering by a Byzantine leader.In this paper, we present Lyra, a protocol that solves this problem. The key idea is the combination of a commit-reveal protocol to obfuscate transaction payloads, and a leaderless ordered consensus protocol that predicts the order of transactions. Lyra has optimal good-case latency, prevents reordering attacks, and is scalable. Finally, it outperforms the latency of Pompē by up to 2 times and its throughput by up to 7 times on a 100-node network over 3 continents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lyra:对区块链中重新排序攻击的快速和可扩展的弹性
通过重新排序区块链交易来操纵市场,黑客从中获利数亿美元。由于它们依赖于状态机复制(SMR),区块链在不阻止黑客影响所选顺序的情况下对交易进行排序。一些秩序公平的共识协议,如pompku[33],在同意这个顺序之前对交易进行排序。它们是不够的,因为黑客可以利用网络延迟之间缺乏三角形不等式来观察待处理的事务,然后再发布自己的事务。其他基于dag的协议,如Fino[24],使用commit-reveal来混淆交易,但不能防止拜占庭领导的重新排序。在本文中,我们提出了Lyra,一个解决这个问题的协议。其关键思想是将用于混淆事务有效负载的提交-披露协议与用于预测事务顺序的无领导有序共识协议相结合。Lyra具有最佳的良好案例延迟,防止重新排序攻击,并且具有可扩展性。最后,在3个大洲的100个节点网络上,它的延迟比pompæ高2倍,吞吐量高7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1