Analyzing Real-Time Multimedia Content from Network Cameras Using CPUs and GPUs in the Cloud

Ahmed S. Kaseb, Bo Fu, A. Mohan, Yung-Hsiang Lu, A. Reibman, G. Thiruvathukal
{"title":"Analyzing Real-Time Multimedia Content from Network Cameras Using CPUs and GPUs in the Cloud","authors":"Ahmed S. Kaseb, Bo Fu, A. Mohan, Yung-Hsiang Lu, A. Reibman, G. Thiruvathukal","doi":"10.1109/MIPR.2018.00020","DOIUrl":null,"url":null,"abstract":"Millions of network cameras are streaming real-time multimedia content (images or videos) for various environments (e.g., highways and malls) and can be used for a variety of applications. Analyzing the content from many network cameras requires significant amounts of computing resources. Cloud vendors offer resources in the form of cloud instances with different capabilities and hourly costs. Some instances include GPUs that can accelerate analysis programs. Doing so incurs additional monetary cost because instances with GPUs are more expensive. It is a challenging problem to reduce the overall monetary cost of using the cloud to analyze the real-time multimedia content from network cameras while meeting the desired analysis frame rates. This paper describes a cloud resource manager that solves this problem by estimating the resource requirements of executing analysis programs using CPU or GPU, formulating the resource allocation problem as a multiple-choice vector bin packing problem, and solving it using an existing algorithm. The experiments show that the manager can reduce up to 61% of the cost compared with other allocation strategies.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Millions of network cameras are streaming real-time multimedia content (images or videos) for various environments (e.g., highways and malls) and can be used for a variety of applications. Analyzing the content from many network cameras requires significant amounts of computing resources. Cloud vendors offer resources in the form of cloud instances with different capabilities and hourly costs. Some instances include GPUs that can accelerate analysis programs. Doing so incurs additional monetary cost because instances with GPUs are more expensive. It is a challenging problem to reduce the overall monetary cost of using the cloud to analyze the real-time multimedia content from network cameras while meeting the desired analysis frame rates. This paper describes a cloud resource manager that solves this problem by estimating the resource requirements of executing analysis programs using CPU or GPU, formulating the resource allocation problem as a multiple-choice vector bin packing problem, and solving it using an existing algorithm. The experiments show that the manager can reduce up to 61% of the cost compared with other allocation strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于云端cpu和gpu的网络摄像机实时多媒体内容分析
数以百万计的网络摄像机为各种环境(例如,高速公路和商场)提供实时多媒体内容(图像或视频),并可用于各种应用。分析来自许多网络摄像机的内容需要大量的计算资源。云供应商以具有不同功能和小时成本的云实例的形式提供资源。一些实例包括可以加速分析程序的gpu。这样做会产生额外的货币成本,因为带有gpu的实例更昂贵。如何在满足所需的分析帧率的同时,降低使用云来分析来自网络摄像机的实时多媒体内容的总体成本,是一个具有挑战性的问题。本文描述了一种云资源管理器,通过估计使用CPU或GPU执行分析程序的资源需求,将资源分配问题表述为一个选择向量装箱问题,并使用现有算法解决该问题。实验表明,与其他分配策略相比,该策略可降低高达61%的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications A Multimodal Approach to Predict Social Media Popularity Ownership Identification and Signaling of Multimedia Content Components Deep Learning of Path-Based Tree Classifiers for Large-Scale Plant Species Identification Understanding User Profiles on Social Media for Fake News Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1