A Classification-based Quantitative Approach for SILAC Data

Seongho Kim, Joohyoung Lee
{"title":"A Classification-based Quantitative Approach for SILAC Data","authors":"Seongho Kim, Joohyoung Lee","doi":"10.4108/EAI.3-12-2015.2262391","DOIUrl":null,"url":null,"abstract":"A practical and powerful approach for stable isotope labeling is stable isotope labeling by amino acids in cell culture (SILAC). A key advantage of SILAC is the ability to detecting simultaneously the isotopically labeled peptides in a single instrument run and so guarantees relative quantitation for a large number of peptides without introducing any variation caused by separate experiments. In this work, we introduce a new quantitative approach to dealing with SILAC protein-level summary using classification-based methodologies. Unlike existing methods, our approach depends mainly \n \non the protein ratio summary and is not restricted only to \n \nthe proteins with two or more peptide hits. In particular, \n \nour approach uses Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm \n \noptimization (PSO), to avoid either a premature of convergence or being stuck in a local optimum. Our simulation studies show that the proposed method performs the best in terms of F1 score.","PeriodicalId":415083,"journal":{"name":"International Conference on Bio-inspired Information and Communications Technologies","volume":"50 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Bio-inspired Information and Communications Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.3-12-2015.2262391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A practical and powerful approach for stable isotope labeling is stable isotope labeling by amino acids in cell culture (SILAC). A key advantage of SILAC is the ability to detecting simultaneously the isotopically labeled peptides in a single instrument run and so guarantees relative quantitation for a large number of peptides without introducing any variation caused by separate experiments. In this work, we introduce a new quantitative approach to dealing with SILAC protein-level summary using classification-based methodologies. Unlike existing methods, our approach depends mainly on the protein ratio summary and is not restricted only to the proteins with two or more peptide hits. In particular, our approach uses Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm optimization (PSO), to avoid either a premature of convergence or being stuck in a local optimum. Our simulation studies show that the proposed method performs the best in terms of F1 score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于分类的SILAC数据定量方法
一种实用而有效的稳定同位素标记方法是利用细胞培养物中的氨基酸进行稳定同位素标记。SILAC的一个关键优势是能够在一次仪器运行中同时检测同位素标记的肽,从而保证对大量肽的相对定量,而不会引入由单独实验引起的任何变化。在这项工作中,我们引入了一种新的定量方法来处理基于分类的SILAC蛋白水平摘要。与现有方法不同,我们的方法主要依赖于蛋白质比例汇总,而不仅仅局限于具有两个或多个肽点的蛋白质。特别是,我们的方法使用高斯混合模型和随机,元启发式全局优化算法,粒子群优化(PSO),以避免过早收敛或陷入局部最优。我们的仿真研究表明,该方法在F1分数方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Taking Cognition Seriously: A generalised physics of cognition Digestive System Dynamics in Molecular Communication Perspectives Sensor Scheme for Target Tracking in Mobile Sensor Networks Leak-Resistant Design of DNA Strand Displacement Systems Design for Detecting Red Blood Cell Deformation at Different Flow Velocities in Blood Vessel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1