A High Accuracy Camera Calibration Method for Sport Videos

Neng Zhang, E. Izquierdo
{"title":"A High Accuracy Camera Calibration Method for Sport Videos","authors":"Neng Zhang, E. Izquierdo","doi":"10.1109/VCIP53242.2021.9675379","DOIUrl":null,"url":null,"abstract":"Camera calibration for sport videos enables precise and natural delivery of graphics on video footage and several other special effects. This in turns substantially improves the visual experience in the audience and facilitates sports analysis within or after the live show. In this paper, we propose a high accuracy camera calibration method for sport videos. First, we generate a homography database by uniformly sampling camera parameters. This database includes more than 91 thousand different homography matrices. Then, we use the conditional generative adversarial network (cGAN) to achieve semantic segmentation splitting the broadcast frames into four classes. In a subsequent processing step, we build an effective feature extraction network to extract the feature of semantic segmented images. After that, we search for the feature in the database to find the best matching homography. Finally, we refine the homography by image alignment. In a comprehensive evaluation using the 2014 World Cup dataset, our method outperforms other state-of-the-art techniques.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Camera calibration for sport videos enables precise and natural delivery of graphics on video footage and several other special effects. This in turns substantially improves the visual experience in the audience and facilitates sports analysis within or after the live show. In this paper, we propose a high accuracy camera calibration method for sport videos. First, we generate a homography database by uniformly sampling camera parameters. This database includes more than 91 thousand different homography matrices. Then, we use the conditional generative adversarial network (cGAN) to achieve semantic segmentation splitting the broadcast frames into four classes. In a subsequent processing step, we build an effective feature extraction network to extract the feature of semantic segmented images. After that, we search for the feature in the database to find the best matching homography. Finally, we refine the homography by image alignment. In a comprehensive evaluation using the 2014 World Cup dataset, our method outperforms other state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高精度运动视频摄像机标定方法
体育视频的摄像机校准可以在视频片段和其他一些特殊效果上精确和自然地传递图形。这反过来又大大改善了观众的视觉体验,并便于在现场表演中或之后进行体育分析。本文提出了一种高精度的运动视频摄像机标定方法。首先,对相机参数进行均匀采样,生成单应性数据库。该数据库包括超过91,000种不同的单应性矩阵。然后,我们使用条件生成对抗网络(cGAN)将广播帧分成四类来实现语义分割。在后续的处理步骤中,我们构建了一个有效的特征提取网络来提取语义分割图像的特征。然后在数据库中搜索特征,找到最匹配的同形词。最后,我们通过图像对齐来改进单应性。在使用2014年世界杯数据集的综合评估中,我们的方法优于其他最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seq-Masks: Bridging the gap between appearance and gait modeling for video-based person re-identification Deep Metric Learning for Human Action Recognition with SlowFast Networks LRS-Net: invisible QR Code embedding, detection, and restoration Deep Color Constancy Using Spatio-Temporal Correlation of High-Speed Video Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1