Reinforcement learning in a spiking neural network with memristive plasticity

D. Vlasov, R. Rybka, A. Sboev, A. Serenko, A. Minnekhanov, V. A. Demin
{"title":"Reinforcement learning in a spiking neural network with memristive plasticity","authors":"D. Vlasov, R. Rybka, A. Sboev, A. Serenko, A. Minnekhanov, V. A. Demin","doi":"10.1109/DCNA56428.2022.9923314","DOIUrl":null,"url":null,"abstract":"The reinforcement learning paradigm is for the first time presented for spiking neural network architecture with memristor-based local dynamic plasticity. The models of two kinds of such plasticity are used in the simulation study of the Cartpole task. Applying the Gaussian receptive field time-encoding scheme and simple reinforcing current pulses determined by the sign of reward change, the successful learning is demonstrated for both types of memristive plasticity.","PeriodicalId":110836,"journal":{"name":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCNA56428.2022.9923314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reinforcement learning paradigm is for the first time presented for spiking neural network architecture with memristor-based local dynamic plasticity. The models of two kinds of such plasticity are used in the simulation study of the Cartpole task. Applying the Gaussian receptive field time-encoding scheme and simple reinforcing current pulses determined by the sign of reward change, the successful learning is demonstrated for both types of memristive plasticity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有记忆可塑性的尖峰神经网络的强化学习
本文首次提出了基于记忆电阻局部动态可塑性的尖峰神经网络结构的强化学习范式。采用两种塑性模型对Cartpole任务进行了仿真研究。采用高斯接受野时间编码方案和由奖励变化符号决定的简单强化电流脉冲,证明了两种记忆可塑性的成功学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discretization Effects in Speed-Gradient Two-rotor Vibration Setup Synchronization Control Broadcasting to noisy boosters: modulation of astrocytic calcium activity and gliotransmitter release by norepinephrine Testing approaches to statistical evaluation of connectivity estimates in epileptic brain based on simple oscillatory models Role of the Bidirectional Cardiorespiratory Coupling in the Nonlinear Dynamics of the Cardiovascular System CPG-based control of robotic fish by setting macro-commands with transient parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1