Cluster analysis by exploiting conditional independences

T. Szántai, E. Kovács
{"title":"Cluster analysis by exploiting conditional independences","authors":"T. Szántai, E. Kovács","doi":"10.1109/SACI.2013.6608986","DOIUrl":null,"url":null,"abstract":"In this paper we introduce an unsupervised learning algorithm for discovering some of the conditional independences between the attributes (features) which characterize the elements of a statistical population. Using this algorithm we obtain a graph structure which makes possible the clustering of data elements into classes in an efficient way. In the same time our algorithm gives a new method for reducing the dimension of the feature space. In this way also the visualization of the clusters becomes possible in lower dimensional cases. The results of this type of clustering can be used also for classification of new data elements. We show how the method works on real problems and compare our results to those of other algorithms which are applied to the same dataset.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce an unsupervised learning algorithm for discovering some of the conditional independences between the attributes (features) which characterize the elements of a statistical population. Using this algorithm we obtain a graph structure which makes possible the clustering of data elements into classes in an efficient way. In the same time our algorithm gives a new method for reducing the dimension of the feature space. In this way also the visualization of the clusters becomes possible in lower dimensional cases. The results of this type of clustering can be used also for classification of new data elements. We show how the method works on real problems and compare our results to those of other algorithms which are applied to the same dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用条件独立性进行聚类分析
在本文中,我们引入了一种无监督学习算法,用于发现表征统计总体元素的属性(特征)之间的一些条件独立性。利用该算法,我们得到了一种图形结构,使数据元素能够以一种有效的方式聚类。同时给出了一种特征空间降维的新方法。通过这种方式,在低维的情况下,集群的可视化也成为可能。这种聚类的结果也可以用于新数据元素的分类。我们展示了该方法如何处理实际问题,并将我们的结果与应用于相同数据集的其他算法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
V/f control strategy with constant power factor for SPMSM drives, with experiments Spline filtering in accordance to ISO/TS 16610: ANSI C-code for engineers HITS based network algorithm for evaluating the professional skills of wine tasters Performance evaluation of a face detection algorithm running on general purpose operating systems Tumor growth model identification and analysis in case of C38 colon adenocarcinoma and B16 melanoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1