Water quality classification using neural networks: Case study of canals in Bangkok, Thailand

S. Areerachakul, S. Sanguansintukul
{"title":"Water quality classification using neural networks: Case study of canals in Bangkok, Thailand","authors":"S. Areerachakul, S. Sanguansintukul","doi":"10.1109/ICITST.2009.5402577","DOIUrl":null,"url":null,"abstract":"Water quality is one of the major concerns of countries around the world. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 3 chemical factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), and Biochemical Oxygen Demand (BOD). The methodology involves applying data mining techniques using neural networks with the Levenberg-Marquardt algorithm on data from 288 canals in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2003–2007. The results exhibit a high accuracy rate at 99.34% in classifying the water quality of canals in Bangkok. Subsequently, this encouraging result could be applied with more parameters and also can be extended to the related science.","PeriodicalId":251169,"journal":{"name":"2009 International Conference for Internet Technology and Secured Transactions, (ICITST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference for Internet Technology and Secured Transactions, (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITST.2009.5402577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Water quality is one of the major concerns of countries around the world. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 3 chemical factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), and Biochemical Oxygen Demand (BOD). The methodology involves applying data mining techniques using neural networks with the Levenberg-Marquardt algorithm on data from 288 canals in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2003–2007. The results exhibit a high accuracy rate at 99.34% in classifying the water quality of canals in Bangkok. Subsequently, this encouraging result could be applied with more parameters and also can be extended to the related science.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络进行水质分类:以泰国曼谷运河为例
水质是世界各国关注的主要问题之一。本研究旨在对水质进行自动分类。采用3种化学因子指标对水质等级进行评价。这些因素是pH值(pH),溶解氧(DO)和生化需氧量(BOD)。该方法包括使用神经网络和Levenberg-Marquardt算法对泰国曼谷288条运河的数据进行数据挖掘技术。数据来自2003-2007年曼谷市政排水和污水处理部门。结果表明,该方法对曼谷地区水渠水质的分类准确率高达99.34%。随后,这一令人鼓舞的结果可以应用于更多的参数,也可以推广到相关科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Usability driven website design — An equine sports case study Grasping contextual awareness inside aworkspace at the entrance to support group interaction Towards security goals in summative e-assessment security Cloud Computing: The impact on digital forensic investigations Evaluation of question classification systems using differing features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1