Particle Swarm Optimization and Image Analysis

S. Cagnoni, M. Mordonini
{"title":"Particle Swarm Optimization and Image Analysis","authors":"S. Cagnoni, M. Mordonini","doi":"10.4018/978-1-59904-849-9.CH191","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) is a simple but powerful optimization algorithm, introduced by Kennedy and Eberhart (Kennedy 1995). Its search for function optima is inspired by the behavior of flocks of birds looking for food. Similarly to birds, a set (swarm) of agents (particles) fly over the search space, which is coincident with the function domain, looking for the points where the function value is maximum (or minimum). In doing so, each particle’s motion obeys two very simple difference equations which describe the particle’s position and velocity update. A particle’s motion has a strong random component (exploration) and is mostly independent from the others’; in fact, the only piece of information which is shared among all members of the swarm, or of a large neighborhood of each particle, is the point where the best value for the function has been found so far. Therefore, the search behavior of the swarm can be defined as emergent, since no particle is specifically programmed to achieve the final collective behavior or to play a specific role within the swarm, but just to perform a much simpler local task. This chapter introduces the basics of the algorithm and describes the main features which make it particularly efficient in solving a large number of problems, with particular regard to image analysis and to the modifications that must be applied to the basic algorithm, in order to exploit its most attractive features in a domain which is different from function optimization.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Particle Swarm Optimization (PSO) is a simple but powerful optimization algorithm, introduced by Kennedy and Eberhart (Kennedy 1995). Its search for function optima is inspired by the behavior of flocks of birds looking for food. Similarly to birds, a set (swarm) of agents (particles) fly over the search space, which is coincident with the function domain, looking for the points where the function value is maximum (or minimum). In doing so, each particle’s motion obeys two very simple difference equations which describe the particle’s position and velocity update. A particle’s motion has a strong random component (exploration) and is mostly independent from the others’; in fact, the only piece of information which is shared among all members of the swarm, or of a large neighborhood of each particle, is the point where the best value for the function has been found so far. Therefore, the search behavior of the swarm can be defined as emergent, since no particle is specifically programmed to achieve the final collective behavior or to play a specific role within the swarm, but just to perform a much simpler local task. This chapter introduces the basics of the algorithm and describes the main features which make it particularly efficient in solving a large number of problems, with particular regard to image analysis and to the modifications that must be applied to the basic algorithm, in order to exploit its most attractive features in a domain which is different from function optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子群优化与图像分析
粒子群算法(Particle Swarm Optimization, PSO)是Kennedy和Eberhart (Kennedy 1995)提出的一种简单但功能强大的优化算法。它寻找最优功能的灵感来自于鸟群寻找食物的行为。与鸟类类似,一组(群)代理(粒子)飞越与函数域一致的搜索空间,寻找函数值最大(或最小)的点。这样,每个粒子的运动服从两个非常简单的差分方程,它们描述了粒子的位置和速度更新。粒子的运动具有很强的随机成分(探索),并且基本上独立于其他粒子;事实上,群的所有成员或每个粒子的大邻域之间共享的唯一信息是迄今为止找到的函数的最佳值的点。因此,群体的搜索行为可以定义为涌现,因为没有粒子被专门编程来实现最终的集体行为或在群体中扮演特定的角色,而只是执行一个更简单的局部任务。本章介绍了该算法的基础知识,并描述了使其在解决大量问题时特别有效的主要特征,特别是关于图像分析和必须应用于基本算法的修改,以便在不同于函数优化的领域中利用其最具吸引力的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emerging Applications in Immersive Technologies Knowledge-Based Systems RBF Networks for Power System Topology Verification Association Rule Mining "Narrative" Information Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1