Texture Defect Detection Using Dual-Tree Complex Wavelet Reconstruction

Huixian Sun, Yuhua Zhang, Zhaorui Li
{"title":"Texture Defect Detection Using Dual-Tree Complex Wavelet Reconstruction","authors":"Huixian Sun, Yuhua Zhang, Zhaorui Li","doi":"10.1109/CSE.2014.61","DOIUrl":null,"url":null,"abstract":"This paper introduces a new approach for automated inspection of textured materials using Dual-Tree Complex Wavelet (DT-CWT). The DT-CWT can transform images into a representation with six directionally selective sub bands for each scale. By properly selecting the smooth sub image or the combination of detail sub images in different resolution levels for backward wavelet transform, the reconstructed image will remove regular, repetitive texture patterns and enhance only local anomalies. The difficult defect detection problem in complicated textured images is converted into a simple thresholding problem in nontextured images. The experimental results show that the DT-CWT is more effective than the real discrete wavelet transform.","PeriodicalId":258990,"journal":{"name":"2014 IEEE 17th International Conference on Computational Science and Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 17th International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2014.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a new approach for automated inspection of textured materials using Dual-Tree Complex Wavelet (DT-CWT). The DT-CWT can transform images into a representation with six directionally selective sub bands for each scale. By properly selecting the smooth sub image or the combination of detail sub images in different resolution levels for backward wavelet transform, the reconstructed image will remove regular, repetitive texture patterns and enhance only local anomalies. The difficult defect detection problem in complicated textured images is converted into a simple thresholding problem in nontextured images. The experimental results show that the DT-CWT is more effective than the real discrete wavelet transform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双树复小波重构的纹理缺陷检测
介绍了一种基于双树复小波(DT-CWT)的纹理材料自动检测方法。DT-CWT可以将图像转换为每个尺度具有六个方向选择性子带的表示。通过适当选择不同分辨率的光滑子图像或细节子图像组合进行后向小波变换,重构图像将去除规则的、重复的纹理模式,仅增强局部异常。将复杂纹理图像中困难的缺陷检测问题转化为简单的非纹理图像阈值检测问题。实验结果表明,DT-CWT比实际的离散小波变换更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is Really NACK Protocol Secure to Be Employed in MANETs? Design of an X-Band Negative Resistance Oscillator Based on the ASIW in Modern Wireless Communication Systems Evolutionary Computation with Multi-variates Hybrid Multi-order Fuzzy Time Series for Stock Forecasting WiPCon: A Proxied Control Plane for Wireless Access Points in Software Defined Networks Design of Non-autonomous Chaotic Generalized Synchronization Based Pseudorandom Number Generator with Application in Avalanche Image Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1