Lane detection using color-based segmentation

Kuo-Yu Chiu, Sheng-Fuu Lin
{"title":"Lane detection using color-based segmentation","authors":"Kuo-Yu Chiu, Sheng-Fuu Lin","doi":"10.1109/IVS.2005.1505186","DOIUrl":null,"url":null,"abstract":"Lane boundary detection is the problem of estimating the geometric structure of the lane boundaries of a road on the images captured by a camera. To be an intelligent vehicle, lane boundary is necessary information, so the system and the algorithm should be as simple and fast as possible. In this paper, we propose a new method based on color information and this method is applicable in complex environment. In this system, we first choose a region of interest to find out a threshold using statistical method in a color image. The threshold then will be used to distinguish possible lane boundary from the road. We use color-based segmentation to find out the lane boundary and use a quadratic function to approach it. This system demands low computational power and memory requirements, and is robust in the presence of noise, shadows, pavement, and obstacles such like cars, motorcycles and pedestrians conditions. The result images can be used as pre-processed images for lane tracking, road following or obstacle detection.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"235","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 235

Abstract

Lane boundary detection is the problem of estimating the geometric structure of the lane boundaries of a road on the images captured by a camera. To be an intelligent vehicle, lane boundary is necessary information, so the system and the algorithm should be as simple and fast as possible. In this paper, we propose a new method based on color information and this method is applicable in complex environment. In this system, we first choose a region of interest to find out a threshold using statistical method in a color image. The threshold then will be used to distinguish possible lane boundary from the road. We use color-based segmentation to find out the lane boundary and use a quadratic function to approach it. This system demands low computational power and memory requirements, and is robust in the presence of noise, shadows, pavement, and obstacles such like cars, motorcycles and pedestrians conditions. The result images can be used as pre-processed images for lane tracking, road following or obstacle detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于颜色分割的车道检测
车道边界检测是在摄像机拍摄的图像上估计道路车道边界的几何结构的问题。车道边界是实现智能车辆的必要信息,因此系统和算法应尽可能的简单和快速。本文提出了一种基于颜色信息的新方法,该方法适用于复杂环境。在该系统中,我们首先在彩色图像中选择感兴趣的区域,利用统计方法找到阈值。然后,阈值将用于区分可能的车道边界和道路。我们使用基于颜色的分割来找到车道边界,并使用二次函数来接近它。该系统对计算能力和内存的要求较低,并且在存在噪声、阴影、路面和障碍物(如汽车、摩托车和行人)的情况下具有鲁棒性。结果图像可以用作车道跟踪,道路跟踪或障碍物检测的预处理图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A statistical based UWB multipath channel model for the indoor environments WPAN applications Visual-based assistance for electric vehicle driving Cooperative driving and lane changing at blind crossings Vehicle localization on a digital map using particles filtering Past, current and future on nonlinear dynamics and noise origins of non-smooth gear transmission dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1