{"title":"Optimal polarimetric processing for enhanced target detection","authors":"Leslie M. Novak, M. Burl, W. W. Irving","doi":"10.1109/NTC.1991.147989","DOIUrl":null,"url":null,"abstract":"The results of a study of several polarimetric target detection algorithms are presented. The study concerns the Lincoln Laboratory millimeter-wave SAR sensor, a fully polarimetric, 35 GHz synthetic-aperture radar. Fully polarimetric measurements (HH, HV, VV) are processed into intensity imagery using adaptive and nonadaptive polarimetric whitening filters (PWFs), and the amount of speckle reduction is quantified. Then a two-parameter CFAR (constant false alarm rate) detector is run over the imagery to detect the targets. Nonadaptive PWF processed imagery is shown to provide better detection performance than either adaptive PWF processed imagery or single-polarimetric-channel HH imagery. In addition, nonadaptive PWF processed imagery is shown to be visually clearer than adaptive PWF processed imagery.<<ETX>>","PeriodicalId":320008,"journal":{"name":"NTC '91 - National Telesystems Conference Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"356","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTC '91 - National Telesystems Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTC.1991.147989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 356
Abstract
The results of a study of several polarimetric target detection algorithms are presented. The study concerns the Lincoln Laboratory millimeter-wave SAR sensor, a fully polarimetric, 35 GHz synthetic-aperture radar. Fully polarimetric measurements (HH, HV, VV) are processed into intensity imagery using adaptive and nonadaptive polarimetric whitening filters (PWFs), and the amount of speckle reduction is quantified. Then a two-parameter CFAR (constant false alarm rate) detector is run over the imagery to detect the targets. Nonadaptive PWF processed imagery is shown to provide better detection performance than either adaptive PWF processed imagery or single-polarimetric-channel HH imagery. In addition, nonadaptive PWF processed imagery is shown to be visually clearer than adaptive PWF processed imagery.<>