Tangent distance kernels for support vector machines

B. Haasdonk, Daniel Keysers
{"title":"Tangent distance kernels for support vector machines","authors":"B. Haasdonk, Daniel Keysers","doi":"10.1109/ICPR.2002.1048439","DOIUrl":null,"url":null,"abstract":"When dealing with pattern recognition problems one encounters different types of a-priori knowledge. It is important to incorporate such knowledge into the classification method at hand. A very common type of a-priori knowledge is transformation invariance of the input data, e.g. geometric transformations of image-data like shifts, scaling etc. Distance based classification methods can make use of this by a modified distance measure called tangent distance. We introduce a new class of kernels for support vector machines which incorporate tangent distance and therefore are applicable in cases where such transformation invariances are known. We report experimental results which show that the performance of our method is comparable to other state-of-the-art methods, while problems of existing ones are avoided.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

Abstract

When dealing with pattern recognition problems one encounters different types of a-priori knowledge. It is important to incorporate such knowledge into the classification method at hand. A very common type of a-priori knowledge is transformation invariance of the input data, e.g. geometric transformations of image-data like shifts, scaling etc. Distance based classification methods can make use of this by a modified distance measure called tangent distance. We introduce a new class of kernels for support vector machines which incorporate tangent distance and therefore are applicable in cases where such transformation invariances are known. We report experimental results which show that the performance of our method is comparable to other state-of-the-art methods, while problems of existing ones are avoided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机的切距离核
在处理模式识别问题时,人们会遇到不同类型的先验知识。将这些知识纳入手边的分类方法是很重要的。一种非常常见的先验知识是输入数据的变换不变性,例如图像数据的几何变换,如移位、缩放等。基于距离的分类方法可以通过一种称为切线距离的改进距离度量来利用这一点。我们为支持向量机引入了一类新的核,它包含了切线距离,因此适用于已知这种变换不变性的情况。我们报告的实验结果表明,我们的方法的性能可与其他最先进的方法相媲美,同时避免了现有方法的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1