Analysis of multiscale sign series entropy of the young and middle-aged electroencephalogram signals

Fei Du, Shitong Wang, Jun Wang, Jiafei Dai, F. Hou, Jin Li
{"title":"Analysis of multiscale sign series entropy of the young and middle-aged electroencephalogram signals","authors":"Fei Du, Shitong Wang, Jun Wang, Jiafei Dai, F. Hou, Jin Li","doi":"10.1109/CISP-BMEI.2016.7852958","DOIUrl":null,"url":null,"abstract":"The physiological analysis of electroencephalogram (EEG) signals is of great significance in assessing the activity of the brain function and the physiological state. EEG is a means of clinical examination of brain diseases. Age is one of the important factors that affect the results of the EEG. EEG signal analysis is mainly to analyze the time series of the signal, multiscale entropy (MSE) analysis [1-3] is the method that used to analyze the finite length of the time series. Multiscale sign series entropy (MSSE) method is proposed for the analysis of EEG signals in the young and middle-aged. We use the proposed method to analyze the signals from several aspects of data length, word length, noise, multi scale etc. By analyzing the influence of these factors, we can still distinguish the EEG signals of different ages. Multiscale sign series entropy (MSSE) analysis algorithm can effectively separate the brain electrical signals from the young and middle aged, which is expected to have a certain reference value for the traditional pathological analysis of the EEG signals.","PeriodicalId":275095,"journal":{"name":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2016.7852958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The physiological analysis of electroencephalogram (EEG) signals is of great significance in assessing the activity of the brain function and the physiological state. EEG is a means of clinical examination of brain diseases. Age is one of the important factors that affect the results of the EEG. EEG signal analysis is mainly to analyze the time series of the signal, multiscale entropy (MSE) analysis [1-3] is the method that used to analyze the finite length of the time series. Multiscale sign series entropy (MSSE) method is proposed for the analysis of EEG signals in the young and middle-aged. We use the proposed method to analyze the signals from several aspects of data length, word length, noise, multi scale etc. By analyzing the influence of these factors, we can still distinguish the EEG signals of different ages. Multiscale sign series entropy (MSSE) analysis algorithm can effectively separate the brain electrical signals from the young and middle aged, which is expected to have a certain reference value for the traditional pathological analysis of the EEG signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中青年脑电图信号的多尺度符号序列熵分析
脑电图信号的生理分析在评估脑功能活动和生理状态方面具有重要意义。脑电图是脑病临床检查的一种手段。年龄是影响脑电图结果的重要因素之一。脑电信号分析主要是分析信号的时间序列,多尺度熵(MSE)分析[1-3]是用来分析有限长度的时间序列的方法。提出了多尺度符号序列熵(MSSE)方法对中青年脑电信号进行分析。利用该方法从数据长度、字长、噪声、多尺度等方面对信号进行分析。通过分析这些因素的影响,我们仍然可以区分不同年龄的脑电信号。多尺度符号序列熵(MSSE)分析算法能够有效地分离出中青年脑电信号,有望对传统的脑电信号病理分析具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
D-admissible control of singular delta operator systems Performance comparison of two spread-spectrum-based wireless video transmission schemes Impact analysis on three-dimensional indoor location technology Formation of graphene oxide/graphene membrane on solid-state substrates via Langmuir-Blodgett self-assembly Design of a panorama parking system based on DM6437
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1