How centralized is decentralized? Comparison of wealth distribution in coins and tokens

Bartosz Ku'smierz, R. Overko
{"title":"How centralized is decentralized? Comparison of wealth distribution in coins and tokens","authors":"Bartosz Ku'smierz, R. Overko","doi":"10.1109/COINS54846.2022.9854972","DOIUrl":null,"url":null,"abstract":"Rapidly growing distributed ledger technologies (DLTs) have recently received attention among researchers in both industry and academia. While a lot of existing analysis (mainly) of the Bitcoin and Ethereum networks is available, the lack of measurements for other crypto projects is observed. This article addresses questions about tokenomics and wealth distributions in cryptocurrencies. We analyze the time-dependent statistical properties of top cryptocurrency holders for 14 different distributed ledger projects. The provided metrics include approximated Zipf coefficient, Shannon entropy, Gini coefficient, and Nakamoto coefficient. We show that there are quantitative differences between the coins (cryptocurrencies operating on their own independent network) and tokens (which operate on top of a smart contract platform). Presented results show that coins and tokens have different values of approximated Zipf coefficient and centralization levels. This work is relevant for DLTs as it might be useful in modeling and improving the committee selection process, especially in decentralized autonomous organizations (DAOs) and delegated proof-of-stake (DPoS) blockchains.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9854972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Rapidly growing distributed ledger technologies (DLTs) have recently received attention among researchers in both industry and academia. While a lot of existing analysis (mainly) of the Bitcoin and Ethereum networks is available, the lack of measurements for other crypto projects is observed. This article addresses questions about tokenomics and wealth distributions in cryptocurrencies. We analyze the time-dependent statistical properties of top cryptocurrency holders for 14 different distributed ledger projects. The provided metrics include approximated Zipf coefficient, Shannon entropy, Gini coefficient, and Nakamoto coefficient. We show that there are quantitative differences between the coins (cryptocurrencies operating on their own independent network) and tokens (which operate on top of a smart contract platform). Presented results show that coins and tokens have different values of approximated Zipf coefficient and centralization levels. This work is relevant for DLTs as it might be useful in modeling and improving the committee selection process, especially in decentralized autonomous organizations (DAOs) and delegated proof-of-stake (DPoS) blockchains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去中心化是如何实现的?硬币和代币的财富分配比较
快速发展的分布式账本技术(dlt)最近受到了工业界和学术界研究人员的关注。虽然对比特币和以太坊网络有很多现有的分析(主要是),但观察到缺乏对其他加密项目的测量。本文解决了有关代币经济学和加密货币财富分配的问题。我们分析了14个不同分布式账本项目的顶级加密货币持有者的时间相关统计属性。所提供的指标包括近似Zipf系数、Shannon熵、基尼系数和Nakamoto系数。我们表明,硬币(在自己的独立网络上运行的加密货币)和令牌(在智能合约平台上运行)之间存在数量差异。结果表明,硬币和代币具有不同的近似Zipf系数和集中化程度。这项工作与dlt相关,因为它可能有助于建模和改进委员会选择过程,特别是在去中心化自治组织(dao)和委托权益证明(DPoS)区块链中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security risks in MQTT-based Industrial IoT Applications Time and Energy trade-off analysis for Multi-Installment Scheduling with result retrieval strategy for Large Scale data processing GANIBOT: A Network Flow Based Semi Supervised Generative Adversarial Networks Model for IoT Botnets Detection COINS 2022 Cover Page Interference Recognition for Fog Enabled IoT Architecture using a Novel Tree-based Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1