{"title":"\"SOS Signal\" in Breathing Sound - Rapid COVID-19 Diagnosis Based on Machine Learning","authors":"Hanxiang Wang","doi":"10.1145/3569966.3570100","DOIUrl":null,"url":null,"abstract":"Abstract—The severe acute respiratory syndrome coronavirus 2 is a novel type of coronavirus that causes COVID-19. The COVID-19 virus has recently infected more than 590 million individuals, resulting in a global pandemic. Traditional diagnosis methods are no longer effective due to the exponential rise in infection rates. Quick and accurate COVID-19 diagnosis is made possible by machine learning (ML), which also assuages the burden on healthcare systems. After the effective utilization of Cough Audio Signal Classification in diagnosing a number of respiratory illnesses, there has been significant interest in using ML to enable universal COVID-19 screening. The purpose of the current study is to determine people's COVID-19 status through machine learning algorithms. We have developed a Random Forest based model and achieved an accuracy of 0.873 on the COUGHVID dataset, demonstrates the potential of using audio signals as a cheap, accessible, and accurate COVID-19 screening tool.","PeriodicalId":145580,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569966.3570100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract—The severe acute respiratory syndrome coronavirus 2 is a novel type of coronavirus that causes COVID-19. The COVID-19 virus has recently infected more than 590 million individuals, resulting in a global pandemic. Traditional diagnosis methods are no longer effective due to the exponential rise in infection rates. Quick and accurate COVID-19 diagnosis is made possible by machine learning (ML), which also assuages the burden on healthcare systems. After the effective utilization of Cough Audio Signal Classification in diagnosing a number of respiratory illnesses, there has been significant interest in using ML to enable universal COVID-19 screening. The purpose of the current study is to determine people's COVID-19 status through machine learning algorithms. We have developed a Random Forest based model and achieved an accuracy of 0.873 on the COUGHVID dataset, demonstrates the potential of using audio signals as a cheap, accessible, and accurate COVID-19 screening tool.