{"title":"Two-dimensional Comprehensive Meteorological Observation Platform Based on Combination of Timeline and Observation Data Products","authors":"Mengxing Xu, Hongbin Wang","doi":"10.1109/ICMO49322.2019.9026145","DOIUrl":null,"url":null,"abstract":"The one-dimensional time axis on which the current meteorological observation platform depends is transformed into a two-dimensional coordinate system, i.e. one dimension, multi-source observation instruments, data and products are added. This dimension shows the observation occurring at a certain time node. The multi-source observations at the same time are vertically arranged to be distinguished by icons or colors. In this study, real-time display and rendering of scenes are realized through real-time efficient local multi-level of detail loading and adaptive multi-level caching of large-scale 3D spatial data and the dynamic interaction of multi-source observation information is realized by combining the CPU/GPU graphics hardware accelerated rendering technology of OpenGL+Shader. The platform is upgraded from one dimension of time to two dimensions of time and observation, which greatly expands the selection and change space of independent variables, thus the capacity of dependent variables is also greatly increased. Theoretically, it can accommodate all kinds of observation data and products. Through seamless connection on one page, it can freely schedule, switch and superimpose all kinds of observation information, enabling business researchers to efficiently and intensively obtain comprehensive meteorological observation data products, and carry out analysis and application.","PeriodicalId":257532,"journal":{"name":"2019 International Conference on Meteorology Observations (ICMO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Meteorology Observations (ICMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMO49322.2019.9026145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The one-dimensional time axis on which the current meteorological observation platform depends is transformed into a two-dimensional coordinate system, i.e. one dimension, multi-source observation instruments, data and products are added. This dimension shows the observation occurring at a certain time node. The multi-source observations at the same time are vertically arranged to be distinguished by icons or colors. In this study, real-time display and rendering of scenes are realized through real-time efficient local multi-level of detail loading and adaptive multi-level caching of large-scale 3D spatial data and the dynamic interaction of multi-source observation information is realized by combining the CPU/GPU graphics hardware accelerated rendering technology of OpenGL+Shader. The platform is upgraded from one dimension of time to two dimensions of time and observation, which greatly expands the selection and change space of independent variables, thus the capacity of dependent variables is also greatly increased. Theoretically, it can accommodate all kinds of observation data and products. Through seamless connection on one page, it can freely schedule, switch and superimpose all kinds of observation information, enabling business researchers to efficiently and intensively obtain comprehensive meteorological observation data products, and carry out analysis and application.