Unified Modeling of Multi-Domain Multi-Device ASR Systems

Soumyajit Mitra, Swayambhu Nath Ray, Bharat Padi, Raghavendra Bilgi, Harish Arsikere, Shalini Ghosh, A. Srinivasamurthy, S. Garimella
{"title":"Unified Modeling of Multi-Domain Multi-Device ASR Systems","authors":"Soumyajit Mitra, Swayambhu Nath Ray, Bharat Padi, Raghavendra Bilgi, Harish Arsikere, Shalini Ghosh, A. Srinivasamurthy, S. Garimella","doi":"10.48550/arXiv.2205.06655","DOIUrl":null,"url":null,"abstract":"Modern Automatic Speech Recognition (ASR) systems often use a portfolio of domain-specific models in order to get high accuracy for distinct user utterance types across different devices. In this paper, we propose an innovative approach that integrates the different per-domain per-device models into a unified model, using a combination of domain embedding, domain experts, mixture of experts and adversarial training. We run careful ablation studies to show the benefit of each of these innovations in contributing to the accuracy of the overall unified model. Experiments show that our proposed unified modeling approach actually outperforms the carefully tuned per-domain models, giving relative gains of up to 10% over a baseline model with negligible increase in the number of parameters.","PeriodicalId":358274,"journal":{"name":"International Conference on Text, Speech and Dialogue","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Text, Speech and Dialogue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.06655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern Automatic Speech Recognition (ASR) systems often use a portfolio of domain-specific models in order to get high accuracy for distinct user utterance types across different devices. In this paper, we propose an innovative approach that integrates the different per-domain per-device models into a unified model, using a combination of domain embedding, domain experts, mixture of experts and adversarial training. We run careful ablation studies to show the benefit of each of these innovations in contributing to the accuracy of the overall unified model. Experiments show that our proposed unified modeling approach actually outperforms the carefully tuned per-domain models, giving relative gains of up to 10% over a baseline model with negligible increase in the number of parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多域多设备ASR系统的统一建模
现代自动语音识别(ASR)系统通常使用一系列领域特定模型,以便在不同设备上获得不同用户话语类型的高精度。在本文中,我们提出了一种创新的方法,将不同的每个领域每个设备模型集成到一个统一的模型中,使用领域嵌入,领域专家,专家混合和对抗性训练的组合。我们进行了仔细的消融研究,以显示这些创新在促进整体统一模型准确性方面的好处。实验表明,我们提出的统一建模方法实际上优于精心调整的每域模型,在参数数量可以忽略不计的情况下,比基线模型的相对增益高达10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Hungarian Text Processing with HuSpaCy: Efficient and Accurate NLP Pipelines A Dataset and Strong Baselines for Classification of Czech News Texts Measuring Sentiment Bias in Machine Translation Transfer Learning of Transformer-based Speech Recognition Models from Czech to Slovak Sub 8-Bit Quantization of Streaming Keyword Spotting Models for Embedded Chipsets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1