Online Matching in Regular Bipartite Graphs

Lali Barrière, X. Muñoz, Janosch Fuchs, Walter Unger
{"title":"Online Matching in Regular Bipartite Graphs","authors":"Lali Barrière, X. Muñoz, Janosch Fuchs, Walter Unger","doi":"10.1142/S0129626418500081","DOIUrl":null,"url":null,"abstract":"In an online problem, the input is revealed one piece at a time. In every time step, the online algorithm has to produce a part of the output, based on the partial knowledge of the input. Such decisions are irrevocable, and thus online algorithms usually lead to nonoptimal solutions. The impact of the partial knowledge depends strongly on the problem. If the algorithm is allowed to read binary information about the future, the amount of bits read that allow the algorithm to solve the problem optimally is the so-called advice complexity. The quality of an online algorithm is measured by its competitive ratio, which compares its performance to that of an optimal offline algorithm. In this paper we study online bipartite matchings focusing on the particular case of bipartite matchings in regular graphs. We give tight upper and lower bounds on the competitive ratio of the online deterministic bipartite matching problem. The competitive ratio turns out to be asymptotically equal to the known randomized competitive ratio. Afterwards, we present an upper and lower bound for the advice complexity of the online deterministic bipartite matching problem.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626418500081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In an online problem, the input is revealed one piece at a time. In every time step, the online algorithm has to produce a part of the output, based on the partial knowledge of the input. Such decisions are irrevocable, and thus online algorithms usually lead to nonoptimal solutions. The impact of the partial knowledge depends strongly on the problem. If the algorithm is allowed to read binary information about the future, the amount of bits read that allow the algorithm to solve the problem optimally is the so-called advice complexity. The quality of an online algorithm is measured by its competitive ratio, which compares its performance to that of an optimal offline algorithm. In this paper we study online bipartite matchings focusing on the particular case of bipartite matchings in regular graphs. We give tight upper and lower bounds on the competitive ratio of the online deterministic bipartite matching problem. The competitive ratio turns out to be asymptotically equal to the known randomized competitive ratio. Afterwards, we present an upper and lower bound for the advice complexity of the online deterministic bipartite matching problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正则二部图的在线匹配
在在线问题中,输入一次显示一块。在每一个时间步,在线算法必须根据输入的部分知识产生一部分输出。这样的决定是不可撤销的,因此在线算法通常导致非最优解。部分知识的影响很大程度上取决于问题。如果允许算法读取有关未来的二进制信息,那么允许算法以最佳方式解决问题的读取位数就是所谓的建议复杂度。在线算法的质量是通过其竞争比来衡量的,竞争比是将其性能与最优的离线算法进行比较。本文研究了正则图的在线二部匹配问题,重点讨论了正则图中二部匹配的特殊情况。给出了在线确定性二部匹配问题的竞争比的紧上界和下界。竞争比渐近等于已知的随机竞争比。然后,给出了在线确定性二部匹配问题建议复杂度的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1