{"title":"Evaluating Power Density for 5G Applications","authors":"M. Nesterova, S. Nicol, Yuliya Nesterova","doi":"10.1109/5GWF.2018.8517003","DOIUrl":null,"url":null,"abstract":"The next generation of wireless 5G technology is being continuously designed to meet the growing demand from different industries for more data, more devices, higher speed, and improved operational efficiency. While mmWave bands offer much higher bandwidths, they are subject to higher signal losses when compared to the lower frequency bands currently used for wireless technologies. As such, the industries involved require evolutionary methodologies for the thorough evaluation of 5G mobile devices. The authors offer an advanced near-field measurement technique as a solution for robust assessment of device performance. This novel method introduces the spatial vector evaluation of both electric E and magnetic H fields through the cross-detection of their interaction. Based in terms of the Poynting vector theorem, this two-probe technique provides a steady measurement-based orientation for research within the rapidly changing conditions of the mmWave environment.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8517003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The next generation of wireless 5G technology is being continuously designed to meet the growing demand from different industries for more data, more devices, higher speed, and improved operational efficiency. While mmWave bands offer much higher bandwidths, they are subject to higher signal losses when compared to the lower frequency bands currently used for wireless technologies. As such, the industries involved require evolutionary methodologies for the thorough evaluation of 5G mobile devices. The authors offer an advanced near-field measurement technique as a solution for robust assessment of device performance. This novel method introduces the spatial vector evaluation of both electric E and magnetic H fields through the cross-detection of their interaction. Based in terms of the Poynting vector theorem, this two-probe technique provides a steady measurement-based orientation for research within the rapidly changing conditions of the mmWave environment.