Deep Convolutional AutoEncoders as a Minimal State Representation for Reinforcement Learning in Industrial Robot Manipulators

Alan Maldonado-Ramirez, I. López-Juárez, R. Rios-Cabrera
{"title":"Deep Convolutional AutoEncoders as a Minimal State Representation for Reinforcement Learning in Industrial Robot Manipulators","authors":"Alan Maldonado-Ramirez, I. López-Juárez, R. Rios-Cabrera","doi":"10.1109/COMROB.2018.8689419","DOIUrl":null,"url":null,"abstract":"Reinforcement Learning has become a very powerful technique in the last decade thanks to the technological advances in computational power and efficient learning algorithms in neuronal networks. Reinforcement Learning allows an autonomous agent to learn through experience how to solve a problem in an optimal way, with a minimal information of its environment, just a reward signal. This approach has lightened the way to an artificial intelligence capable of reaching superhuman performance in games such as Go and Backgammon, beating world champion players. Unfortunately this is far from a real world robot application due to many technological challenges. So in this paper we propose how to get a low-dimensional state representation for industrial robot manipulators, using visual information and Convolutional Autoencoders to speed up the information processing in the Reinforcement Learning training phase.","PeriodicalId":446027,"journal":{"name":"2018 XX Congreso Mexicano de Robótica (COMRob)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XX Congreso Mexicano de Robótica (COMRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMROB.2018.8689419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement Learning has become a very powerful technique in the last decade thanks to the technological advances in computational power and efficient learning algorithms in neuronal networks. Reinforcement Learning allows an autonomous agent to learn through experience how to solve a problem in an optimal way, with a minimal information of its environment, just a reward signal. This approach has lightened the way to an artificial intelligence capable of reaching superhuman performance in games such as Go and Backgammon, beating world champion players. Unfortunately this is far from a real world robot application due to many technological challenges. So in this paper we propose how to get a low-dimensional state representation for industrial robot manipulators, using visual information and Convolutional Autoencoders to speed up the information processing in the Reinforcement Learning training phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度卷积自编码器作为工业机器人机械臂强化学习的最小状态表示
在过去的十年中,由于计算能力和神经网络中有效的学习算法的技术进步,强化学习已经成为一种非常强大的技术。强化学习允许自主代理通过经验学习如何以最优的方式解决问题,仅使用最小的环境信息,即奖励信号。这种方法为人工智能在围棋和西洋双陆棋等游戏中取得超人的表现、击败世界冠军选手铺平了道路。不幸的是,由于许多技术挑战,这离现实世界的机器人应用还很远。因此,在本文中,我们提出了如何在强化学习训练阶段使用视觉信息和卷积自编码器来加速信息处理,从而获得工业机器人操作手的低维状态表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Output-Feedback Control for the Cart-Pole System: A Super-Twisting Sliding-Mode approach ORB-SLAM Based Active Disturbance Rejection Control for Quadrotor Autonomous Flight Output-based Robust Control for Quad-Rotor Tracking: An Attractive Ellipsoid Approach Modular Modelling for Urban Traffic Networks based on Multi-Agent Systems and Petri Nets Specifying Welding Tasks in an Off-Line Programming System of a Robot by Using a Haptic Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1