Automate robot reaching task with learning from demonstration

Jie Chen, Hongliang Ren, H. Lau
{"title":"Automate robot reaching task with learning from demonstration","authors":"Jie Chen, Hongliang Ren, H. Lau","doi":"10.1109/ICAR.2017.8023663","DOIUrl":null,"url":null,"abstract":"Over the last decades, robots have been moved from industries to domestic environments. Robot Learning from Demonstration (LfD) is one of the most significant methods to facilitate this trend. In this work, we first discuss details about a efficient motion planning strategy, e.g., Stable Estimator of Dynamical Systems (SEDS). A human first demonstrates reaching tasks several times, and Gaussian Mixture Regression is used to roughly encode the demonstrations into a set of differential equations. Then based on Lyapunov Stability Theorem, a constrained nonlinear optimization problem is formulated to iteratively refine the previously learned differential equations and SEDS is thus obtained. Experiments have been conducted on a KUKA LBR iiwa robot to verify two properties of the proposed method, e.g., asymptotical stability and adaptation to spatial perturbations.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over the last decades, robots have been moved from industries to domestic environments. Robot Learning from Demonstration (LfD) is one of the most significant methods to facilitate this trend. In this work, we first discuss details about a efficient motion planning strategy, e.g., Stable Estimator of Dynamical Systems (SEDS). A human first demonstrates reaching tasks several times, and Gaussian Mixture Regression is used to roughly encode the demonstrations into a set of differential equations. Then based on Lyapunov Stability Theorem, a constrained nonlinear optimization problem is formulated to iteratively refine the previously learned differential equations and SEDS is thus obtained. Experiments have been conducted on a KUKA LBR iiwa robot to verify two properties of the proposed method, e.g., asymptotical stability and adaptation to spatial perturbations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过示范学习自动化机器人完成任务
在过去的几十年里,机器人已经从工业转移到家庭环境。机器人从演示中学习(LfD)是促进这一趋势的最重要方法之一。在这项工作中,我们首先讨论了一个有效的运动规划策略的细节,例如,动态系统的稳定估计器(SEDS)。一个人首先演示多次到达任务,然后使用高斯混合回归将演示大致编码为一组微分方程。然后基于Lyapunov稳定性定理,构造一个约束非线性优化问题,对之前学过的微分方程进行迭代细化,从而得到SEDS。在KUKA LBR iiwa机器人上进行了实验,验证了该方法的渐近稳定性和对空间扰动的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Questionnaire experiment using networked service robots Model selection for incremental learning of generalizable movement primitives Safety evaluation method of robot arm considering energy of contact Robotman: A security robot for human-robot interaction Physical edge detection in clothing items for robotic manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1