No-reference image quality assessment based on automatic machine learning

Qi Qian, Qingbing Sang
{"title":"No-reference image quality assessment based on automatic machine learning","authors":"Qi Qian, Qingbing Sang","doi":"10.1051/itmconf/20224501034","DOIUrl":null,"url":null,"abstract":"In different applications in deep learning, due to different required features, it is necessary to design specialized Neural Network structure. However, the design of the structure largely depends on the relevant subject knowledge of researchers and lots of experiments, resulting in huge waste of manpower. Therefore, in the field of Image Quality Assessment (IQA), the authors propose a method to apply Neural Architecture Search (NAS) to IQA. Mainly through the Differentiable Architecture Search algorithm, the structure of the modular Neural Network unit is searched by the stochastic gradient descent algorithm with better training performance by relaxing the operation features into a continuous space. Also, the idea of weight sharing is used to further save. The authors use the mainstream IQA database LIVE to search for Neural Network structures, and retrain and validate the searched structures in four datasets. A large number of experiments show that the model obtained by the search experiment achieves the effect of the best algorithm at this stage, and has a certain quality. The main contributions of this paper are: Transform the DARTS algorithm to adapt the regression problem, and introduce the Neural Architecture Search algorithm into the IQA field and conduct experimental verification.","PeriodicalId":433898,"journal":{"name":"ITM Web of Conferences","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITM Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/itmconf/20224501034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In different applications in deep learning, due to different required features, it is necessary to design specialized Neural Network structure. However, the design of the structure largely depends on the relevant subject knowledge of researchers and lots of experiments, resulting in huge waste of manpower. Therefore, in the field of Image Quality Assessment (IQA), the authors propose a method to apply Neural Architecture Search (NAS) to IQA. Mainly through the Differentiable Architecture Search algorithm, the structure of the modular Neural Network unit is searched by the stochastic gradient descent algorithm with better training performance by relaxing the operation features into a continuous space. Also, the idea of weight sharing is used to further save. The authors use the mainstream IQA database LIVE to search for Neural Network structures, and retrain and validate the searched structures in four datasets. A large number of experiments show that the model obtained by the search experiment achieves the effect of the best algorithm at this stage, and has a certain quality. The main contributions of this paper are: Transform the DARTS algorithm to adapt the regression problem, and introduce the Neural Architecture Search algorithm into the IQA field and conduct experimental verification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自动机器学习的无参考图像质量评估
在深度学习的不同应用中,由于需要的特征不同,需要设计专门的神经网络结构。然而,结构的设计很大程度上依赖于研究人员的相关学科知识和大量的实验,造成了巨大的人力浪费。因此,在图像质量评估(IQA)领域,作者提出了一种将神经结构搜索(NAS)应用于图像质量评估的方法。主要通过可微分架构搜索算法,通过将操作特征放松到连续空间中,采用训练性能更好的随机梯度下降算法搜索模块化神经网络单元的结构。此外,还采用了权重共享的思想来进一步节约。作者使用主流的IQA数据库LIVE来搜索神经网络结构,并在四个数据集上对搜索到的结构进行再训练和验证。大量实验表明,通过搜索实验得到的模型达到了本阶段最佳算法的效果,并具有一定的质量。本文的主要贡献有:对DARTS算法进行改造以适应回归问题,并将Neural Architecture Search算法引入到IQA领域并进行实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Price Prediction using Facebook Prophet Drowsiness Detection using EEG signals and Machine Learning Algorithms Aging mechanisms analysis of Graphite/LiNi0.80Co0.15Al0.05O2 lithium-ion batteries among the whole life cycle at different temperatures Android-based object recognition application for visually impaired Conception d’une séquence d’introduction dynamique du produit scalaire via une approche constructiviste intégrant la mécanique et les TIC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1