Efficient Orthogonal Non-negative Matrix Factorization over Stiefel Manifold

W. Zhang, Mingkui Tan, Quan Z. Sheng, Lina Yao, Javen Qinfeng Shi
{"title":"Efficient Orthogonal Non-negative Matrix Factorization over Stiefel Manifold","authors":"W. Zhang, Mingkui Tan, Quan Z. Sheng, Lina Yao, Javen Qinfeng Shi","doi":"10.1145/2983323.2983761","DOIUrl":null,"url":null,"abstract":"Orthogonal Non-negative Matrix Factorization (ONMF) approximates a data matrix X by the product of two lower dimensional factor matrices: X -- UVT, with one of them orthogonal. ONMF has been widely applied for clustering, but it often suffers from high computational cost due to the orthogonality constraint. In this paper, we propose a method, called Nonlinear Riemannian Conjugate Gradient ONMF (NRCG-ONMF), which updates U and V alternatively and preserves the orthogonality of U while achieving fast convergence speed. Specifically, in order to update U, we develop a Nonlinear Riemannian Conjugate Gradient (NRCG) method on the Stiefel manifold using Barzilai-Borwein (BB) step size. For updating V, we use a closed-form solution under non-negativity constraint. Extensive experiments on both synthetic and real-world data sets show consistent superiority of our method over other approaches in terms of orthogonality preservation, convergence speed and clustering performance.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Orthogonal Non-negative Matrix Factorization (ONMF) approximates a data matrix X by the product of two lower dimensional factor matrices: X -- UVT, with one of them orthogonal. ONMF has been widely applied for clustering, but it often suffers from high computational cost due to the orthogonality constraint. In this paper, we propose a method, called Nonlinear Riemannian Conjugate Gradient ONMF (NRCG-ONMF), which updates U and V alternatively and preserves the orthogonality of U while achieving fast convergence speed. Specifically, in order to update U, we develop a Nonlinear Riemannian Conjugate Gradient (NRCG) method on the Stiefel manifold using Barzilai-Borwein (BB) step size. For updating V, we use a closed-form solution under non-negativity constraint. Extensive experiments on both synthetic and real-world data sets show consistent superiority of our method over other approaches in terms of orthogonality preservation, convergence speed and clustering performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stiefel流形上的高效正交非负矩阵分解
正交非负矩阵分解(ONMF)通过两个低维因子矩阵的乘积来近似数据矩阵X: X—UVT,其中一个是正交的。ONMF在聚类中得到了广泛的应用,但由于正交性约束,其计算成本较高。在本文中,我们提出了一种非线性黎曼共轭梯度ONMF (NRCG-ONMF)方法,该方法交替更新U和V,在保持U的正交性的同时获得较快的收敛速度。具体来说,为了更新U,我们利用Barzilai-Borwein (BB)步长在Stiefel流形上建立了一种非线性黎曼共轭梯度(NRCG)方法。对于V的更新,我们使用非负性约束下的闭解。在合成数据集和真实数据集上进行的大量实验表明,我们的方法在保持正交性、收敛速度和聚类性能方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model Approximate Discovery of Functional Dependencies for Large Datasets Mining Shopping Patterns for Divergent Urban Regions by Incorporating Mobility Data A Personal Perspective and Retrospective on Web Search Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1