Mining frequent itemsets with convertible constraints

J. Pei, Jiawei Han, L. Lakshmanan
{"title":"Mining frequent itemsets with convertible constraints","authors":"J. Pei, Jiawei Han, L. Lakshmanan","doi":"10.1109/ICDE.2001.914856","DOIUrl":null,"url":null,"abstract":"Recent work has highlighted the importance of the constraint based mining paradigm in the context of frequent itemsets, associations, correlations, sequential patterns, and many other interesting patterns in large databases. The authors study constraints which cannot be handled with existing theory and techniques. For example, avg(S) /spl theta/ /spl nu/, median(S) /spl theta/ /spl nu/, sum(S) /spl theta/ /spl nu/ (S can contain items of arbitrary values) (/spl theta//spl isin/{/spl ges/, /spl les/}), are customarily regarded as \"tough\" constraints in that they cannot be pushed inside an algorithm such as a priori. We develop a notion of convertible constraints and systematically analyze, classify, and characterize this class. We also develop techniques which enable them to be readily pushed deep inside the recently developed FP-growth algorithm for frequent itemset mining. Results from our detailed experiments show the effectiveness of the techniques developed.","PeriodicalId":431818,"journal":{"name":"Proceedings 17th International Conference on Data Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"385","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2001.914856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 385

Abstract

Recent work has highlighted the importance of the constraint based mining paradigm in the context of frequent itemsets, associations, correlations, sequential patterns, and many other interesting patterns in large databases. The authors study constraints which cannot be handled with existing theory and techniques. For example, avg(S) /spl theta/ /spl nu/, median(S) /spl theta/ /spl nu/, sum(S) /spl theta/ /spl nu/ (S can contain items of arbitrary values) (/spl theta//spl isin/{/spl ges/, /spl les/}), are customarily regarded as "tough" constraints in that they cannot be pushed inside an algorithm such as a priori. We develop a notion of convertible constraints and systematically analyze, classify, and characterize this class. We also develop techniques which enable them to be readily pushed deep inside the recently developed FP-growth algorithm for frequent itemset mining. Results from our detailed experiments show the effectiveness of the techniques developed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘具有可转换约束的频繁项集
最近的工作强调了基于约束的挖掘范式在频繁项集、关联、关联、顺序模式和大型数据库中许多其他有趣模式的上下文中的重要性。作者研究了现有理论和技术无法处理的约束。例如,avg(S) /spl theta//spl nu/, median(S) /spl theta//spl nu/, sum(S) /spl theta//spl nu/ (S可以包含任意值的项)(/spl theta//spl isin/{/spl ges/, /spl les/})通常被认为是“严格”的约束,因为它们不能被推入像先验这样的算法中。我们提出了可转换约束的概念,并系统地分析、分类和描述这一类。我们还开发了一些技术,使它们能够很容易地深入到最近开发的用于频繁项集挖掘的fp增长算法中。我们详细的实验结果表明所开发的技术是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality-aware and load sensitive planning of image similarity queries Distinctiveness-sensitive nearest-neighbor search for efficient similarity retrieval of multimedia information Data management support of Web applications Prefetching based on the type-level access pattern in object-relational DBMSs Duality-based subsequence matching in time-series databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1