Gas exchange for the plants on the example of coastal sedge and comparison with the materials of spectro-gasometric ground-based measurements from the UAV and the Sentinel-2 satellite

V. Lyalko, S. Dugin, O. Sybirtseva, Yelizaveta Dorofey, S. Golubov, G. Zholobak
{"title":"Gas exchange for the plants on the example of coastal sedge and comparison with the materials of spectro-gasometric ground-based measurements from the UAV and the Sentinel-2 satellite","authors":"V. Lyalko, S. Dugin, O. Sybirtseva, Yelizaveta Dorofey, S. Golubov, G. Zholobak","doi":"10.36023/ujrs.2022.9.4.221","DOIUrl":null,"url":null,"abstract":"Spectro-gasometric ground-based measurements were carried out during 2020-2021. It was determined that five vegetation indices - REP (Red Edge Position), Green NRDI (Normalized Difference Vegetation Index), Green MOD (Green Model) and Red MOD (Red edge Model) are more responsive to the presence of СО2 concentration depending on leaf photosynthesis and leaf respiration of the coastal sedge (Carex riparia) with high correlation under Pearson from 0.60 to 0.72. Certain vegetation indices capture changes in СО2 concentration and can be recommended for use in carbon flux models for vegetation canopy. Data from DJI P4 Multispectral UAV, Parrot Bebop Pro Thermal and Sentinel-2 satellite compared to ground measurements on May 25, 2021.","PeriodicalId":113561,"journal":{"name":"Ukrainian journal of remote sensing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian journal of remote sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36023/ujrs.2022.9.4.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spectro-gasometric ground-based measurements were carried out during 2020-2021. It was determined that five vegetation indices - REP (Red Edge Position), Green NRDI (Normalized Difference Vegetation Index), Green MOD (Green Model) and Red MOD (Red edge Model) are more responsive to the presence of СО2 concentration depending on leaf photosynthesis and leaf respiration of the coastal sedge (Carex riparia) with high correlation under Pearson from 0.60 to 0.72. Certain vegetation indices capture changes in СО2 concentration and can be recommended for use in carbon flux models for vegetation canopy. Data from DJI P4 Multispectral UAV, Parrot Bebop Pro Thermal and Sentinel-2 satellite compared to ground measurements on May 25, 2021.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以沿海莎草为例,研究了植物的气体交换,并与无人机和哨兵2号卫星的光谱气体地面测量资料进行了比较
在2020-2021年期间进行了光谱-气体计量地面测量。结果表明,沿海苔草(Carex riparia)的5个植被指数REP (Red Edge Position)、Green NRDI (Normalized Difference vegetation Index)、Green MOD (Green Model)和Red MOD (Red Edge Model)对СО2浓度的存在响应更大,在Pearson下的相关系数为0.60 ~ 0.72。某些植被指数捕捉СО2浓度的变化,可推荐用于植被冠层的碳通量模型。来自大疆P4多光谱无人机、Parrot Bebop Pro Thermal和Sentinel-2卫星的数据与2021年5月25日的地面测量数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Оперативний супутниковий геомоніторинг наслідків руйнування греблі Каховської гідроелектростанції Обґрунтування вибору полігонів, визначення їх критеріїв і параметрів для проведення досліджень з оцінювання вуглеводневого потенціалу надр шляхом комбінування геолого-геофізичної та аерокосмічної інформації Simulation of the vulnerability of the steppe landscape and climate zone of Ukraine to climate changes based on space image data Thanks to the Reviewers of the Journal in 2023 Спектральна модель динамічних компонентів ландшафтів на основі багатоспектральних космічних знімків Землі
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1