Achieving High Utilization for Approximate Fair Queueing in Data Center

Jingling Liu, Jiawei Huang, Ning Jiang, Weihe Li, Jianxin Wang
{"title":"Achieving High Utilization for Approximate Fair Queueing in Data Center","authors":"Jingling Liu, Jiawei Huang, Ning Jiang, Weihe Li, Jianxin Wang","doi":"10.1109/ICDCS47774.2020.00099","DOIUrl":null,"url":null,"abstract":"Modern data centers often host multiple applications with diverse network demands. To provide fair bandwidth allocation to several thousand traversing flows, Approximate Fair Queueing (AFQ) utilizes multiple priority queues in switch to approximate ideal fair queueing. However, due to limited number of queues in commodity switches, AFQ easily experiences high packet loss and low link utilization. In this paper, we propose Elastic Fair Queueing (EFQ), which leverages limited priority queues to flexibly achieve both high network utilization and fair bandwidth allocation. EFQ dynamically assigns the free buffer space in priority queues for each packet to obtain high utilization without sacrificing flow-level fairness. The results of simulation experiments and real implementations show that EFQ reduces the average flow completion time by up to 82% over the state-of-the-art fair bandwidth allocation mechanisms.","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modern data centers often host multiple applications with diverse network demands. To provide fair bandwidth allocation to several thousand traversing flows, Approximate Fair Queueing (AFQ) utilizes multiple priority queues in switch to approximate ideal fair queueing. However, due to limited number of queues in commodity switches, AFQ easily experiences high packet loss and low link utilization. In this paper, we propose Elastic Fair Queueing (EFQ), which leverages limited priority queues to flexibly achieve both high network utilization and fair bandwidth allocation. EFQ dynamically assigns the free buffer space in priority queues for each packet to obtain high utilization without sacrificing flow-level fairness. The results of simulation experiments and real implementations show that EFQ reduces the average flow completion time by up to 82% over the state-of-the-art fair bandwidth allocation mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现数据中心近似公平排队的高利用率
现代数据中心通常托管具有不同网络需求的多个应用程序。为了给数千个遍历流提供公平的带宽分配,近似公平排队(AFQ)利用交换机中的多个优先级队列来近似理想的公平排队。然而,由于商品交换机中的队列数量有限,AFQ很容易出现高丢包和低链路利用率的问题。在本文中,我们提出弹性公平排队(EFQ),它利用有限的优先级队列灵活地实现高网络利用率和公平的带宽分配。EFQ在不牺牲流级公平性的前提下,为每个数据包在优先级队列中动态分配空闲缓冲空间。仿真实验和实际实现的结果表明,与最先进的公平带宽分配机制相比,EFQ可将平均流量完成时间减少82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Edge Offloading Scheme for UAV-Assisted Internet of Things Kill Two Birds with One Stone: Auto-tuning RocksDB for High Bandwidth and Low Latency BlueFi: Physical-layer Cross-Technology Communication from Bluetooth to WiFi [Title page i] Distributionally Robust Edge Learning with Dirichlet Process Prior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1