{"title":"Design and quasi-equilibrium analysis of a distributed frequency-restoration controller for inverter-based microgrids","authors":"N. Ainsworth, S. Grijalva","doi":"10.1109/NAPS.2013.6666835","DOIUrl":null,"url":null,"abstract":"This paper discusses a proposed frequency-restoration controller which operates as an outer loop to frequency droop for voltage-source inverters. By quasi-equilibrium analysis, we show that the proposed controller is able to provide arbitrarily small steady-state frequency error while maintaing power sharing between inverters without need for communication or centralized control. We derive rate of convergence, discuss design considerations (including a fundamental trade-off that must be made in design), present a design procedure to meet a maximum frequency error requirement, and show simulation results verifying our analysis and design method. The proposed controller will allow flexible plug-and-play inverter-based networks to meet a specified maximum frequency error requirement.","PeriodicalId":421943,"journal":{"name":"2013 North American Power Symposium (NAPS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2013.6666835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This paper discusses a proposed frequency-restoration controller which operates as an outer loop to frequency droop for voltage-source inverters. By quasi-equilibrium analysis, we show that the proposed controller is able to provide arbitrarily small steady-state frequency error while maintaing power sharing between inverters without need for communication or centralized control. We derive rate of convergence, discuss design considerations (including a fundamental trade-off that must be made in design), present a design procedure to meet a maximum frequency error requirement, and show simulation results verifying our analysis and design method. The proposed controller will allow flexible plug-and-play inverter-based networks to meet a specified maximum frequency error requirement.