Multi-Document Extractive Text Summarization via Deep Learning Approach

Afsaneh Rezaei, S. Dami, P. Daneshjoo
{"title":"Multi-Document Extractive Text Summarization via Deep Learning Approach","authors":"Afsaneh Rezaei, S. Dami, P. Daneshjoo","doi":"10.1109/KBEI.2019.8735084","DOIUrl":null,"url":null,"abstract":"Today, given the huge amount of information, summarization has become one of the most applicable topics in data mining that can help users gain access to useful data over a short period of time. In this study, two multi-document extractive text Summarization systems are introduced. The major objective of this research is to use autoencoder neural network and deep belief network separately for scoring sentences in a document to compare their performances. Deep neural networks can improve the results by generating new features. The abovementioned systems were tested on DUC 2007 dataset and evaluated using ROUGE-1 and ROUGE-2 criteria. The results show a better performance of autoencoder network versus deep belief network. It is also possible to compare these values with results of other systems to realize the effectiveness of the proposed methods.","PeriodicalId":339990,"journal":{"name":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2019.8735084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Today, given the huge amount of information, summarization has become one of the most applicable topics in data mining that can help users gain access to useful data over a short period of time. In this study, two multi-document extractive text Summarization systems are introduced. The major objective of this research is to use autoencoder neural network and deep belief network separately for scoring sentences in a document to compare their performances. Deep neural networks can improve the results by generating new features. The abovementioned systems were tested on DUC 2007 dataset and evaluated using ROUGE-1 and ROUGE-2 criteria. The results show a better performance of autoencoder network versus deep belief network. It is also possible to compare these values with results of other systems to realize the effectiveness of the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习方法的多文档抽取文本摘要
在信息量巨大的今天,摘要已经成为数据挖掘中最适用的主题之一,它可以帮助用户在短时间内获得有用的数据。本文介绍了两种多文档抽取文本摘要系统。本研究的主要目的是分别使用自编码器神经网络和深度信念网络对文档中的句子进行评分,并比较它们的性能。深度神经网络可以通过生成新的特征来改善结果。在DUC 2007数据集上对上述系统进行了测试,并使用ROUGE-1和ROUGE-2标准进行了评估。结果表明,自编码器网络比深度信念网络具有更好的性能。还可以将这些值与其他系统的结果进行比较,以实现所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Profitability Prediction for ATM Transactions Using Artificial Neural Networks: A Data-Driven Analysis Fabrication of UV detector by Schottky Pd/ZnO/Si Contacts Hybrid of genetic algorithm and krill herd for software clustering problem Development of a Hybrid Bayesian Network Model for Hydraulic Simulation of Agricultural Water Distribution and Delivery Using SIFT Descriptors for Face Recognition Based on Neural Network and Kepenekci Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1