Persistence of Excitation in an Online Monitoring of Transformer

Syed Shadab
{"title":"Persistence of Excitation in an Online Monitoring of Transformer","authors":"Syed Shadab","doi":"10.1109/PESGM48719.2022.9916945","DOIUrl":null,"url":null,"abstract":"For effective online monitoring to assess thermal performance and life expectancy, Top-oil temperature (TOT) and Hot spot Temperature (HST) should be accurately esti-mated. In general, the thermal-electrical analogy is used for the first-order model based on the Resistance-Capacitance (RC) circuit structure to approximate the evolution of thermal performance. Traditionally, the TOT model parameters are identified by minimizing the error between estimated and actual values using the input-output data. The Gradient-based estimation (Least-square minimization) guarantees the convergence of the parameter estimation error to zero only when the Persistence of Excitation (PE) condition holds for regressor signals. As the choice of input-output data used for parameter identification is crucial, the Design of Experiment (DoE) is generally performed in the laboratory to satisfy PE conditions. Therefore, the TOT model parameter estimation problem is reformulated from a system identification perspective by exploring the finite-time estimators (FTE) that accurately estimate the TOT model parameters for non-PE data from real-time operating trans-formers without DoE. The experimental analysis is carried out on MATLAB to demonstrate the identified PE problem, effect of DoE, and the performance of finite time estimators for real-time scenario-based non-PE data in thermal modeling of the transformer.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For effective online monitoring to assess thermal performance and life expectancy, Top-oil temperature (TOT) and Hot spot Temperature (HST) should be accurately esti-mated. In general, the thermal-electrical analogy is used for the first-order model based on the Resistance-Capacitance (RC) circuit structure to approximate the evolution of thermal performance. Traditionally, the TOT model parameters are identified by minimizing the error between estimated and actual values using the input-output data. The Gradient-based estimation (Least-square minimization) guarantees the convergence of the parameter estimation error to zero only when the Persistence of Excitation (PE) condition holds for regressor signals. As the choice of input-output data used for parameter identification is crucial, the Design of Experiment (DoE) is generally performed in the laboratory to satisfy PE conditions. Therefore, the TOT model parameter estimation problem is reformulated from a system identification perspective by exploring the finite-time estimators (FTE) that accurately estimate the TOT model parameters for non-PE data from real-time operating trans-formers without DoE. The experimental analysis is carried out on MATLAB to demonstrate the identified PE problem, effect of DoE, and the performance of finite time estimators for real-time scenario-based non-PE data in thermal modeling of the transformer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变压器在线监测中的励磁持续性问题
为了有效地在线监测以评估热性能和预期寿命,应准确估计top oil temperature (TOT)和Hot spot temperature (HST)。通常,基于电阻-电容(RC)电路结构的一阶模型采用热电类比来近似热性能的演变。传统上,TOT模型参数是通过使用输入输出数据最小化估计值与实际值之间的误差来识别的。基于梯度的估计(最小二乘最小化)保证参数估计误差收敛到零,只有当激励持续(PE)条件成立的回归信号。由于用于参数识别的输入输出数据的选择至关重要,因此通常在实验室中进行实验设计(DoE)以满足PE条件。因此,从系统辨识的角度出发,通过探索有限时间估计器(FTE)来准确估计无DoE的实时运行变压器非pe数据的TOT模型参数,从而重新表述TOT模型参数估计问题。在MATLAB上进行了实验分析,以验证所识别的PE问题、DoE的影响以及有限时间估计器在基于实时场景的非PE数据的变压器热建模中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for the Operational Reliability Evaluation of Integrated Electric Power-Gas Networks The Human Factors of Public Safety Power Shutoff (PSPS) Decision-Making: Improving Decision Support Displays Data-Driven Model Reduction of the Moving Boundary Heat Pump Dynamic Model Privacy-Preserving Feasibility Assessment for P2P Energy Trading and Storage Integration Distribution System Planning for Growth in Residential Electric Vehicle Adoption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1