A Clustering-Generative Model Based Method for Load Data Augmentation

Xiaoyi Qiao, Jiang Wu
{"title":"A Clustering-Generative Model Based Method for Load Data Augmentation","authors":"Xiaoyi Qiao, Jiang Wu","doi":"10.1109/CAC57257.2022.10055403","DOIUrl":null,"url":null,"abstract":"As big data technologies become more prevalent in the energy sector, the importance of data is increasing. Data augmentation techniques can enhance the size and quality of data sets. In the scenario of an integrated energy system, the complex coupling relationship of various forms of energy poses a challenge for load data augmentation, for which a data augmentation method for electricity and thermal coupled load is proposed in this paper. First, an asymmetric Variational Autoencoder (VAE) with KL cost annealing is trained. The encoder part is used as a representation learner to extract the electricity and thermal features, based on which K-means++ is used to cluster the raw data. Then the decoder part generates new samples proportionally according to the clustering results. The experimental results show that the load data generated by this method can retain the overall distribution characteristics and the coupling relationship between electricity and thermal.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As big data technologies become more prevalent in the energy sector, the importance of data is increasing. Data augmentation techniques can enhance the size and quality of data sets. In the scenario of an integrated energy system, the complex coupling relationship of various forms of energy poses a challenge for load data augmentation, for which a data augmentation method for electricity and thermal coupled load is proposed in this paper. First, an asymmetric Variational Autoencoder (VAE) with KL cost annealing is trained. The encoder part is used as a representation learner to extract the electricity and thermal features, based on which K-means++ is used to cluster the raw data. Then the decoder part generates new samples proportionally according to the clustering results. The experimental results show that the load data generated by this method can retain the overall distribution characteristics and the coupling relationship between electricity and thermal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类生成模型的负荷数据增强方法
随着大数据技术在能源领域的普及,数据的重要性也在增加。数据增强技术可以增强数据集的大小和质量。在综合能源系统场景下,各种形式的能量之间复杂的耦合关系对负荷数据扩充提出了挑战,为此,本文提出了一种针对电、热耦合负荷的数据扩充方法。首先,采用KL代价退火方法训练非对称变分自编码器(VAE)。编码器部分作为表征学习器提取电和热特征,在此基础上使用k - memeans ++对原始数据进行聚类。解码部分根据聚类结果按比例生成新样本。实验结果表明,该方法生成的负荷数据能较好地保留负荷的总体分布特征和电热耦合关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Object Tracking in Satellite Videos with Meta-updater and Knowledge Distillation An improved event-trigger-based robust 6-DOF spacecraft formation control scheme under restricted communication Adaptive Neural Fixed-time Tracking Control of Underactuated USVs With External Disturbances Computer-Aided Diagnosis of COVID-19 with Joint Instance Segmentation and Classification Prescribed-Time Backstepping Algorithms for Leader-Follower Multi-Agent Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1