{"title":"Comparative Analysis of Machine Learning for Predicting Air Quality in Smart Cities","authors":"Kamel Maaloul, Lejdel Brahim","doi":"10.37394/23205.2022.21.30","DOIUrl":null,"url":null,"abstract":"Ambient air pollution is the most harmful environmental risk to health. As urban air quality improves, health costs from air pollution-related diseases diminish. This is why air pollution is a major challenge for the public and government around the world. Deployment of the Internet of Things-based sensors has considerably changed the dynamics of predicting air quality. Air pollution can be predicted using machine learning algorithms Data-based sensors in the context of smart cities. In this paper, we performed pollution forecasting using machine learning techniques while presenting a comparative study to determine the best model to accurately predict air quality. Random Forest is an efficient algorithm capable of detecting air quality.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"140 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2022.21.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ambient air pollution is the most harmful environmental risk to health. As urban air quality improves, health costs from air pollution-related diseases diminish. This is why air pollution is a major challenge for the public and government around the world. Deployment of the Internet of Things-based sensors has considerably changed the dynamics of predicting air quality. Air pollution can be predicted using machine learning algorithms Data-based sensors in the context of smart cities. In this paper, we performed pollution forecasting using machine learning techniques while presenting a comparative study to determine the best model to accurately predict air quality. Random Forest is an efficient algorithm capable of detecting air quality.