An analysis of the capabilities of COSMO-SKYMED and RADARSAT systems for agricultural area monitoring

S. Paloscia, S. Pettinato, E. Santi, C. Notarnicola, F. Greifeneder, G. Cuozzo, Irene Nicolini, B. Demir, L. Bruzzone
{"title":"An analysis of the capabilities of COSMO-SKYMED and RADARSAT systems for agricultural area monitoring","authors":"S. Paloscia, S. Pettinato, E. Santi, C. Notarnicola, F. Greifeneder, G. Cuozzo, Irene Nicolini, B. Demir, L. Bruzzone","doi":"10.1109/IGARSS.2015.7326736","DOIUrl":null,"url":null,"abstract":"This research aims at analyzing the integration of C and X band data collected from Radarsat2 (RS2) and COSMO-SkyMed (CSK) systems on some test areas in Italy, in order to estimate the main geophysical parameters of soil and vegetation, such as soil moisture and vegetation biomass. A check of the sensitivity of SAR signal to the soil parameters was first carried out on both test sites. Over the South-Tyrol area a retrieval approach based on the Support Vector Regression methodology, which was already tested in this area using C-band data from ENVISAT/ASAR data, was carried out. From these preliminary results it can be concluded that X-band images combined with C-band images could provide valuable information for the retrieval of SMC, even though further investigations should be carried out on a larger time-series and larger set of samples.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research aims at analyzing the integration of C and X band data collected from Radarsat2 (RS2) and COSMO-SkyMed (CSK) systems on some test areas in Italy, in order to estimate the main geophysical parameters of soil and vegetation, such as soil moisture and vegetation biomass. A check of the sensitivity of SAR signal to the soil parameters was first carried out on both test sites. Over the South-Tyrol area a retrieval approach based on the Support Vector Regression methodology, which was already tested in this area using C-band data from ENVISAT/ASAR data, was carried out. From these preliminary results it can be concluded that X-band images combined with C-band images could provide valuable information for the retrieval of SMC, even though further investigations should be carried out on a larger time-series and larger set of samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COSMO-SKYMED和RADARSAT系统用于农业区域监测的能力分析
本研究旨在对意大利部分试验区Radarsat2 (RS2)和cosmos - skymed (CSK)系统采集的C波段和X波段数据进行整合分析,估算土壤和植被的主要地球物理参数,如土壤湿度和植被生物量。首先在两个试验点对SAR信号对土壤参数的敏感性进行了检验。在南蒂罗尔地区,采用了一种基于支持向量回归方法的检索方法,该方法已在该地区使用ENVISAT/ASAR数据的c波段数据进行了试验。从这些初步结果可以得出结论,x波段图像结合c波段图像可以为SMC的检索提供有价值的信息,尽管进一步的研究需要在更大的时间序列和更大的样本集上进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1