Експериментальні дослідження термоакустичних двигунів з двофазним робочим тілом

V. Korobko, Anatoliy Shevtsov
{"title":"Експериментальні дослідження термоакустичних двигунів з двофазним робочим тілом","authors":"V. Korobko, Anatoliy Shevtsov","doi":"10.32620/aktt.2022.4sup1.12","DOIUrl":null,"url":null,"abstract":"A distinguishing feature of these days is the general tendency to decrease the temperature level of the waste heat of engines for power plants in industry, transport, and energy. These circumstances complicate the usage of traditional energy-saving technologies designed to transform this heat into mechanical work. Given the lack of effective technologies, large volumes of such heat emissions are lost. As an example, we can consider ship power engineering. On ships that are equipped with dual-fuel medium and low-speed engines, the thermal emissions of the cooling systems have a temperature of 355…365 K. Given the small exegetical potential, the use of such low-temperature waste energy sources by any heat engines is a difficult problem. Therefore, the task of improving existing energy-saving technologies or developing new ones remains relevant. Thermoacoustic technologies can be useful in solving this problem. A significant advantage of thermoacoustic heat machines is the ability to use any external heat source, in this case low-temperature sources, and produce mechanical work. There are known cases of thermoacoustic oscillations at small temperature differences between heat sources under conditions of high humidity of the working environment. This phenomenon can be used to create low-temperature energy-saving systems based on thermoacoustic engines (TAE) with a wet two-phase working environment. The practical use of thermoacoustic systems as part of ship power plants requires additional research to solve low-level issues, in particular, increasing the specific power of the TAE. This work provides a description of the experimental equipment, design of experimental TAE with a wet working body and research methods. The results of the experiments showed that in experimental TAEs with a two-component (moist) working environment, the temperature of spontaneous thermoacoustic oscillations was 355…359 K, while the longitudinal temperature gradient in the matrix was 1.19…1.30 K/m. The specific power of TAE with a moist environment increased by 1.7…7 times, and the acoustic pressure increased by 2…4.7 times compared to the operation in dry air. It is shown that in the existing TAEs, the condensation of water vapor in the ceramic matrix and on the surfaces of the heat exchangers can lead to a loss of power, roughly up to 25 %, while maintaining the operational capacity.","PeriodicalId":418062,"journal":{"name":"Aerospace technic and technology","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace technic and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32620/aktt.2022.4sup1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A distinguishing feature of these days is the general tendency to decrease the temperature level of the waste heat of engines for power plants in industry, transport, and energy. These circumstances complicate the usage of traditional energy-saving technologies designed to transform this heat into mechanical work. Given the lack of effective technologies, large volumes of such heat emissions are lost. As an example, we can consider ship power engineering. On ships that are equipped with dual-fuel medium and low-speed engines, the thermal emissions of the cooling systems have a temperature of 355…365 K. Given the small exegetical potential, the use of such low-temperature waste energy sources by any heat engines is a difficult problem. Therefore, the task of improving existing energy-saving technologies or developing new ones remains relevant. Thermoacoustic technologies can be useful in solving this problem. A significant advantage of thermoacoustic heat machines is the ability to use any external heat source, in this case low-temperature sources, and produce mechanical work. There are known cases of thermoacoustic oscillations at small temperature differences between heat sources under conditions of high humidity of the working environment. This phenomenon can be used to create low-temperature energy-saving systems based on thermoacoustic engines (TAE) with a wet two-phase working environment. The practical use of thermoacoustic systems as part of ship power plants requires additional research to solve low-level issues, in particular, increasing the specific power of the TAE. This work provides a description of the experimental equipment, design of experimental TAE with a wet working body and research methods. The results of the experiments showed that in experimental TAEs with a two-component (moist) working environment, the temperature of spontaneous thermoacoustic oscillations was 355…359 K, while the longitudinal temperature gradient in the matrix was 1.19…1.30 K/m. The specific power of TAE with a moist environment increased by 1.7…7 times, and the acoustic pressure increased by 2…4.7 times compared to the operation in dry air. It is shown that in the existing TAEs, the condensation of water vapor in the ceramic matrix and on the surfaces of the heat exchangers can lead to a loss of power, roughly up to 25 %, while maintaining the operational capacity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当今的一个显著特征是降低工业、运输和能源发电厂发动机废热的温度水平的普遍趋势。这些情况使传统节能技术的使用复杂化,这些技术旨在将这些热量转化为机械能。由于缺乏有效的技术,大量这样的热排放损失了。作为一个例子,我们可以考虑船舶动力工程。在配备双燃料中低速发动机的船舶上,冷却系统的热排放温度为355…365 K。由于这种低温废能的潜力很小,任何热机利用这种低温废能都是一个难题。因此,改进现有节能技术或开发新技术的任务仍然具有相关性。热声技术可用于解决这一问题。热声热机的一个显著优点是能够使用任何外部热源,在这种情况下是低温热源,并产生机械功。在工作环境的高湿条件下,在热源之间的小温差下有热声振荡的已知情况。这种现象可用于创建基于热声发动机(TAE)的低温节能系统,该系统具有湿两相工作环境。热声系统作为船舶动力装置的一部分的实际应用需要额外的研究来解决低水平问题,特别是增加TAE的比功率。本文介绍了实验设备、湿工体实验TAE的设计及研究方法。实验结果表明,在双组分(湿)工作环境下,实验TAEs的自发热声振荡温度为355 ~ 359 K,而基体的纵向温度梯度为1.19 ~ 1.30 K/m。与干燥环境相比,在潮湿环境下TAE的比功率提高了1.7 ~ 7倍,声压提高了2 ~ 4.7倍。结果表明,在现有的TAEs中,在保持运行容量的同时,陶瓷基体和热交换器表面的水蒸气冷凝会导致功率损失,大约高达25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsteady flow of droplet liquid in hydraulic systems of aircrafts and helicopters: models and analytical solutions Визначення швидкості корозії основного конструкційного матеріалу сіток капілярних розділювачів фаз Використання методу верифікації FMEDA/FIT для оцінювання кібербезпеки програмованого логічного контролера: нова інтерпретація принципу SIS Експериментальне дослідження впливу плівкоутворюючих антикорозійних сполук на втому заклепкових з’єднань Simulating multi-particle deposition based on CEL method: studing the effects of particle and substrate temperature on deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1