Distributed Compression of Multi-View Images using a Geometrical Coding Approach

N. Gehrig, P. Dragotti
{"title":"Distributed Compression of Multi-View Images using a Geometrical Coding Approach","authors":"N. Gehrig, P. Dragotti","doi":"10.1109/ICIP.2007.4379611","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a distributed compression approach for multi-view images, where each camera efficiently encodes its visual information locally without requiring any collaboration with the other cameras. Such a compression scheme can be necessary for camera sensor networks, where each camera has limited power and communication resources and can only transmit data to a central base station. The correlation in the multi-view data acquired by a dense multi-camera system can be extremely large and should therefore be exploited at each encoder in order to reduce the amount of data transmitted to the receiver. Our distributed source coding approach is based on a quadtree decomposition method and uses some geometrical information about the scene and the position of the cameras to estimate this multi-view correlation. We assume that the different views can be modelled as 2D piecewise polynomial functions with ID linear boundaries and show how our approach applies in this context. Our simulation results show that our approach outperforms independent encoding of real multi-view images.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we propose a distributed compression approach for multi-view images, where each camera efficiently encodes its visual information locally without requiring any collaboration with the other cameras. Such a compression scheme can be necessary for camera sensor networks, where each camera has limited power and communication resources and can only transmit data to a central base station. The correlation in the multi-view data acquired by a dense multi-camera system can be extremely large and should therefore be exploited at each encoder in order to reduce the amount of data transmitted to the receiver. Our distributed source coding approach is based on a quadtree decomposition method and uses some geometrical information about the scene and the position of the cameras to estimate this multi-view correlation. We assume that the different views can be modelled as 2D piecewise polynomial functions with ID linear boundaries and show how our approach applies in this context. Our simulation results show that our approach outperforms independent encoding of real multi-view images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于几何编码方法的多视图图像分布式压缩
在本文中,我们提出了一种多视图图像的分布式压缩方法,其中每个摄像机有效地在本地编码其视觉信息,而无需与其他摄像机进行任何协作。这种压缩方案对于摄像机传感器网络是必要的,因为每个摄像机的功率和通信资源有限,只能将数据传输到一个中央基站。密集的多相机系统所获得的多视图数据的相关性可能非常大,因此应在每个编码器上加以利用,以减少传输到接收器的数据量。我们的分布式源编码方法基于四叉树分解方法,并使用一些关于场景和摄像机位置的几何信息来估计这种多视图相关性。我们假设不同的视图可以建模为具有ID线性边界的二维分段多项式函数,并展示我们的方法如何在这种情况下应用。仿真结果表明,该方法优于真实多视点图像的独立编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1