Non-convex regularization and accelerated gradient algorithm for sparse portfolio selection

Qian Li, Wei Zhang, Guoqiang Wang, Yanqin Bai
{"title":"Non-convex regularization and accelerated gradient algorithm for sparse portfolio selection","authors":"Qian Li, Wei Zhang, Guoqiang Wang, Yanqin Bai","doi":"10.1080/10556788.2022.2142580","DOIUrl":null,"url":null,"abstract":"In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the shortcomings of convex penalty. In this paper, we customize the non-convex piecewise quadratic approximation (PQA) function considering the background of portfolio management and present the PQA regularized mean–variance model (PMV). By exposing the feature of PMV, we prove that a KKT point of PMV is a local minimizer if the regularization parameter satisfies a mild condition. Besides, the theoretical sparsity of PMV is analysed, which is associated with the regularization parameter and the weight parameter. To solve this model, we introduce the accelerated proximal gradient (APG) algorithm, whose improved linear convergence rate compared with proximal gradient (PG) algorithm is developed. Moreover, the optimal accelerated parameter of APG algorithm for PMV is attained. These theoretical results are further illustrated with numerical experiments. Finally, empirical analysis demonstrates that the proposed model has a better out-of-sample performance and a lower turnover than many other existing models on the tested datasets.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2142580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the shortcomings of convex penalty. In this paper, we customize the non-convex piecewise quadratic approximation (PQA) function considering the background of portfolio management and present the PQA regularized mean–variance model (PMV). By exposing the feature of PMV, we prove that a KKT point of PMV is a local minimizer if the regularization parameter satisfies a mild condition. Besides, the theoretical sparsity of PMV is analysed, which is associated with the regularization parameter and the weight parameter. To solve this model, we introduce the accelerated proximal gradient (APG) algorithm, whose improved linear convergence rate compared with proximal gradient (PG) algorithm is developed. Moreover, the optimal accelerated parameter of APG algorithm for PMV is attained. These theoretical results are further illustrated with numerical experiments. Finally, empirical analysis demonstrates that the proposed model has a better out-of-sample performance and a lower turnover than many other existing models on the tested datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏组合选择的非凸正则化和加速梯度算法
在投资组合优化中,非凸正则化被认为是一种重要的提高稀疏性的方法,同时也弥补了凸惩罚的缺点。本文考虑到投资组合管理的背景,对非凸分段二次逼近(PQA)函数进行了定制,提出了PQA正则化均值方差模型(PMV)。通过揭示PMV的特征,证明了当正则化参数满足温和条件时,PMV的KKT点是局部最小值。此外,还分析了PMV的理论稀疏度与正则化参数和权参数的关系。为了求解该模型,我们引入了加速近端梯度(APG)算法,与近端梯度(PG)算法相比,APG算法提高了线性收敛速度。此外,还得到了PMV的APG算法的最优加速参数。数值实验进一步说明了这些理论结果。最后,实证分析表明,该模型在测试数据集上具有更好的样本外性能和更低的周转率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximizing the number of rides served for time-limited Dial-a-Ride* A family of limited memory three term conjugate gradient methods A semismooth conjugate gradients method – theoretical analysis A mixed-integer programming formulation for optimizing the double row layout problem Robust reverse 1-center problems on trees with interval costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1